scholarly journals 2187. Prediction of Patient Outcome During Febrile Neutropenia Despite Anti-infective Treatment Using Machine Learning Algorithms

2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S744-S744
Author(s):  
Carolin Jakob ◽  
Annika Classen ◽  
Melanie Stecher ◽  
Sandra Fuhrmann ◽  
Bernd Franke ◽  
...  

Abstract Background Clinical management of prolonged febrile neutropenia despite broad-spectrum empirical antibacterial treatment is a clinical challenge, as standard empirical treatment has failed and a broad spectrum of differential diagnoses has to be considered. Growing prevalence of multi-resistant bacteria and fungi has made a balanced choice of effective anti-infective treatment more difficult. A reliable prediction of complications could indicate options for treatment optimization. Methods We implemented a supervised machine learning approach to predict death or admission to intensive care unit within 28 days in cancer patients with prolonged febrile neutropenia (neutrophils < 500/mm3 and body temperature ≥ 38°C longer than 3 days). We analyzed highly granular retrospective medical data of the Cologne Cohort of Neutropenic Patients (CoCoNut) between 2008 and 2014. Random forest and 10-fold cross-validation were used for classification. The neutropenic episodes from 2014 were used for evaluation of prediction. Results In total, 927 episodes of prolonged febrile neutropenia (median age 52 years, interquartile range 42–62; 562/927 [61%] male; 390/927 [42%] acute myeloid leukemia; 297/927 [32%] lymphoma) with 211/927 (23%) adverse outcomes were processed. We computed 226 features including patient characteristics, medication, clinical signs, as well as laboratory results describing changes of state and interactions of medical parameters. Feature selection revealed 65 features with an area under the receiver operating characteristic curve (AUC) of 0.75. In the validation data set the optimized model had a sensitivity/specificity of 36% and 99% (AUC: 0.68; misclassification error: 0.12) and positive/negative predictive values of 89% and 88%, respectively. The most important features were albumin, age, and procalcitonin. Conclusion Structured granular medical data and machine learning approaches are an innovative tool that can be used in a retrospective setting for prediction of adverse outcomes in patients with prolonged febrile neutropenia. This study is the first important step toward clinical decision support based on predictive models in high-risk cancer patients. Disclosures All authors: No reported disclosures.

2021 ◽  
Author(s):  
Dong Wang ◽  
JinBo Li ◽  
Yali Sun ◽  
Xianfei Ding ◽  
Xiaojuan Zhang ◽  
...  

Abstract Background: Although numerous studies are conducted every year on how to reduce the fatality rate associated with sepsis, it is still a major challenge faced by patients, clinicians, and medical systems worldwide. Early identification and prediction of patients at risk of sepsis and adverse outcomes associated with sepsis are critical. We aimed to develop an artificial intelligence algorithm that can predict sepsis early.Methods: This was a secondary analysis of an observational cohort study from the Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University. A total of 4449 infected patients were randomly assigned to the development and validation data set at a ratio of 4:1. After extracting electronic medical record data, a set of 55 features (variables) was calculated and passed to the random forest algorithm to predict the onset of sepsis.Results: The pre-procedure clinical variables were used to build a prediction model from the training data set using the random forest machine learning method; a 5-fold cross-validation was used to evaluate the prediction accuracy of the model. Finally, we tested the model using the validation data set. The area obtained by the model under the receiver operating characteristic (ROC) curve (AUC) was 0.91, the sensitivity was 87%, and the specificity was 89%.Conclusions: The newly established model can accurately predict the onset of sepsis in ICU patients in clinical settings as early as possible. Prospective studies are necessary to determine the clinical utility of the proposed sepsis prediction model.


Author(s):  
V.T Priyanga ◽  
J.P Sanjanasri ◽  
Vijay Krishna Menon ◽  
E.A Gopalakrishnan ◽  
K.P Soman

The widespread use of social media like Facebook, Twitter, Whatsapp, etc. has changed the way News is created and published; accessing news has become easy and inexpensive. However, the scale of usage and inability to moderate the content has made social media, a breeding ground for the circulation of fake news. Fake news is deliberately created either to increase the readership or disrupt the order in the society for political and commercial benefits. It is of paramount importance to identify and filter out fake news especially in democratic societies. Most existing methods for detecting fake news involve traditional supervised machine learning which has been quite ineffective. In this paper, we are analyzing word embedding features that can tell apart fake news from true news. We use the LIAR and ISOT data set. We churn out highly correlated news data from the entire data set by using cosine similarity and other such metrices, in order to distinguish their domains based on central topics. We then employ auto-encoders to detect and differentiate between true and fake news while also exploring their separability through network analysis.


2021 ◽  
Vol 10 (7) ◽  
pp. 436
Author(s):  
Amerah Alghanim ◽  
Musfira Jilani ◽  
Michela Bertolotto ◽  
Gavin McArdle

Volunteered Geographic Information (VGI) is often collected by non-expert users. This raises concerns about the quality and veracity of such data. There has been much effort to understand and quantify the quality of VGI. Extrinsic measures which compare VGI to authoritative data sources such as National Mapping Agencies are common but the cost and slow update frequency of such data hinder the task. On the other hand, intrinsic measures which compare the data to heuristics or models built from the VGI data are becoming increasingly popular. Supervised machine learning techniques are particularly suitable for intrinsic measures of quality where they can infer and predict the properties of spatial data. In this article we are interested in assessing the quality of semantic information, such as the road type, associated with data in OpenStreetMap (OSM). We have developed a machine learning approach which utilises new intrinsic input features collected from the VGI dataset. Specifically, using our proposed novel approach we obtained an average classification accuracy of 84.12%. This result outperforms existing techniques on the same semantic inference task. The trustworthiness of the data used for developing and training machine learning models is important. To address this issue we have also developed a new measure for this using direct and indirect characteristics of OSM data such as its edit history along with an assessment of the users who contributed the data. An evaluation of the impact of data determined to be trustworthy within the machine learning model shows that the trusted data collected with the new approach improves the prediction accuracy of our machine learning technique. Specifically, our results demonstrate that the classification accuracy of our developed model is 87.75% when applied to a trusted dataset and 57.98% when applied to an untrusted dataset. Consequently, such results can be used to assess the quality of OSM and suggest improvements to the data set.


2019 ◽  
Vol 8 (4) ◽  
pp. 9971-9975

Diabetes mellitus has become a public health problem in both developed and developing countries. If it is not treated early, diabetes-related complications in many vital organs of the body can become fatal. Its early detection is very important for early treatment that can prevent the disease from progressing to such complications. This article focuses on designing a system to assist in the diagnosis of diabetes disease based on medical ontology and automatic learning. The proposed method uses automatic learning algorithms as a classifier for the diagnosis of diabetes based on a medical data set. The ontology suggests a pre-processing of a coherent, consistent, interoperable and shareable knowledge basis of data and the machine learning method focuses on classification based on symptoms and medical tests. Based on the experimental results, DDAS not only offers better performance in predicting and diagnosing diabetes in individuals, but also has better accuracy in recommending useful treatment to patients.


BMJ Open ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. e037161
Author(s):  
Hyunmin Ahn

ObjectivesWe investigated the usefulness of machine learning artificial intelligence (AI) in classifying the severity of ophthalmic emergency for timely hospital visits.Study designThis retrospective study analysed the patients who first visited the Armed Forces Daegu Hospital between May and December 2019. General patient information, events and symptoms were input variables. Events, symptoms, diagnoses and treatments were output variables. The output variables were classified into four classes (red, orange, yellow and green, indicating immediate to no emergency cases). About 200 cases of the class-balanced validation data set were randomly selected before all training procedures. An ensemble AI model using combinations of fully connected neural networks with the synthetic minority oversampling technique algorithm was adopted.ParticipantsA total of 1681 patients were included.Major outcomesModel performance was evaluated using accuracy, precision, recall and F1 scores.ResultsThe accuracy of the model was 99.05%. The precision of each class (red, orange, yellow and green) was 100%, 98.10%, 92.73% and 100%. The recalls of each class were 100%, 100%, 98.08% and 95.33%. The F1 scores of each class were 100%, 99.04%, 95.33% and 96.00%.ConclusionsWe provided support for an AI method to classify ophthalmic emergency severity based on symptoms.


2020 ◽  
Vol 21 (4) ◽  
pp. 1119-1135 ◽  
Author(s):  
Shutao Mei ◽  
Fuyi Li ◽  
André Leier ◽  
Tatiana T Marquez-Lago ◽  
Kailin Giam ◽  
...  

Abstract Human leukocyte antigen class I (HLA-I) molecules are encoded by major histocompatibility complex (MHC) class I loci in humans. The binding and interaction between HLA-I molecules and intracellular peptides derived from a variety of proteolytic mechanisms play a crucial role in subsequent T-cell recognition of target cells and the specificity of the immune response. In this context, tools that predict the likelihood for a peptide to bind to specific HLA class I allotypes are important for selecting the most promising antigenic targets for immunotherapy. In this article, we comprehensively review a variety of currently available tools for predicting the binding of peptides to a selection of HLA-I allomorphs. Specifically, we compare their calculation methods for the prediction score, employed algorithms, evaluation strategies and software functionalities. In addition, we have evaluated the prediction performance of the reviewed tools based on an independent validation data set, containing 21 101 experimentally verified ligands across 19 HLA-I allotypes. The benchmarking results show that MixMHCpred 2.0.1 achieves the best performance for predicting peptides binding to most of the HLA-I allomorphs studied, while NetMHCpan 4.0 and NetMHCcons 1.1 outperform the other machine learning-based and consensus-based tools, respectively. Importantly, it should be noted that a peptide predicted with a higher binding score for a specific HLA allotype does not necessarily imply it will be immunogenic. That said, peptide-binding predictors are still very useful in that they can help to significantly reduce the large number of epitope candidates that need to be experimentally verified. Several other factors, including susceptibility to proteasome cleavage, peptide transport into the endoplasmic reticulum and T-cell receptor repertoire, also contribute to the immunogenicity of peptide antigens, and some of them can be considered by some predictors. Therefore, integrating features derived from these additional factors together with HLA-binding properties by using machine-learning algorithms may increase the prediction accuracy of immunogenic peptides. As such, we anticipate that this review and benchmarking survey will assist researchers in selecting appropriate prediction tools that best suit their purposes and provide useful guidelines for the development of improved antigen predictors in the future.


2017 ◽  
Vol 11 (04) ◽  
pp. 497-511
Author(s):  
Elnaz Davoodi ◽  
Leila Kosseim ◽  
Matthew Mongrain

This paper evaluates the effect of the context of a target word on the identification of complex words in natural language texts. The approach automatically tags words as either complex or not, based on two sets of features: base features that only pertain to the target word, and contextual features that take the context of the target word into account. We experimented with several supervised machine learning models, and trained and tested the approach with the 2016 SemEval Word Complexity Data Set. Results show that when discriminating base features are used, the words around the target word can supplement those features and improve the recognition of complex words.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 3135-3135
Author(s):  
Takeshi Murata ◽  
Takako Yanagisawa ◽  
Toshiaki Kurihara ◽  
Miku Kaneko ◽  
Sana Ota ◽  
...  

3135 Background: Saliva is non-invasively accessible and informative biological fluid which has high potential for the early diagnosis of various diseases. The aim of this study is to develop machine learning methods and to explore new salivary biomarkers to discriminate breast cancer patients from healthy controls. Methods: We conducted a comprehensive metabolite analysis of saliva samples obtained from 101 patients with invasive carcinoma (IC), 23 patients with ductal carcinoma in situ (DCIS) and 42 healthy controls, using capillary electrophoresis and liquid chromatography with mass spectrometry to quantify hundreds of hydrophilic metabolites. Saliva samples were collected under 9h fasting and were split into training and validation data. Conventional statistical analyses and artificial intelligence-based methods were used to access the discrimination abilities of the quantified metabolite. Multiple logistic regression (MLR) model and an alternative decision tree (ADTree)-based machine learning methods were used. The generalization abilities of these mathematical models were validated in various computational tests, such as cross-validation and resampling methods. Results: Among quantified 260 metabolites, amino acids and polyamines showed significantly elevated in saliva from breast cancer patients, e.g. spermine showed the highest area under the receiver operating characteristic curves (AUC) to discriminate IC from C; 0.766 (95% confidence interval [CI]; 0.671 – 0.840, P < 0.0001). These metabolites showed no significant difference between C and DICS, i.e., these metabolites were elevated only in the samples of IC. The MLR yielded higher AUC to discriminate IC from C; 0.790 (95% CI; 0.699 – 0.859, P < 0.0001). The ADTree with ensemble approach showed the best AUC; 0.912 (95% CI; 0.838 – 0.961, P < 0.0001). In the comparison of these metabolites in the analysis of each subtype, seven metabolites were significantly different between Luminal A-like and Luminal B-like while, but few metabolites were significantly different among the other subtypes. Conclusions: These data indicated the combination of salivary metabolomic profiles including polyamines showed potential ability to screening breast cancer in a non-invasive way.


2017 ◽  
Author(s):  
Daniel R. Schrider ◽  
Julien Ayroles ◽  
Daniel R. Matute ◽  
Andrew D. Kern

ABSTRACTHybridization and gene flow between species appears to be common. Even though it is clear that hybridization is widespread across all surveyed taxonomic groups, the magnitude and consequences of introgression are still largely unknown. Thus it is crucial to develop the statistical machinery required to uncover which genomic regions have recently acquired haplotypes via introgression from a sister population. We developed a novel machine learning framework, called FILET (Finding Introgressed Loci via Extra-Trees) capable of revealing genomic introgression with far greater power than competing methods. FILET works by combining information from a number of population genetic summary statistics, including several new statistics that we introduce, that capture patterns of variation across two populations. We show that FILET is able to identify loci that have experienced gene flow between related species with high accuracy, and in most situations can correctly infer which population was the donor and which was the recipient. Here we describe a data set of outbred diploid Drosophila sechellia genomes, and combine them with data from D. simulans to examine recent introgression between these species using FILET. Although we find that these populations may have split more recently than previously appreciated, FILET confirms that there has indeed been appreciable recent introgression (some of which might have been adaptive) between these species, and reveals that this gene flow is primarily in the direction of D. simulans to D. sechellia.AUTHOR SUMMARYUnderstanding the extent to which species or diverged populations hybridize in nature is crucially important if we are to understand the speciation process. Accordingly numerous research groups have developed methodology for finding the genetic evidence of such introgression. In this report we develop a supervised machine learning approach for uncovering loci which have introgressed across species boundaries. We show that our method, FILET, has greater accuracy and power than competing methods in discovering introgression, and in addition can detect the directionality associated with the gene flow between species. Using whole genome sequences from Drosophila simulans and Drosophila sechellia we show that FILET discovers quite extensive introgression between these species that has occurred mostly from D. simulans to D. sechellia. Our work highlights the complex process of speciation even within a well-studied system and points to the growing importance of supervised machine learning in population genetics.


Sign in / Sign up

Export Citation Format

Share Document