scholarly journals Effect of Temperature on the Dielectric and Magnetic Properties of NiFe2O4@MgFe2O4 and ZnFe2O4@MgFe2O4 Core-Shell

Author(s):  
Kheled Roumaih

Abstract The core-shell NiFe2O4@MgFe2O4 (NiF@MgF) and ZnFe2O4@MgFe2O4 (ZnF@MgF) are stable nanocomposites. The experimental results showed perfect dielectric and magnetic properties different than their components. The experimental data revealed that the mutual effect between the core and the shell increases the space charge polarization. Also, the samples showed semiconducting-metallic behavior, which varies according to the temperatures and the frequencies. Furthermore, the magnetization M(T) was studied using the Faraday balance method of all samples. The obtained results of M(T) exhibit good magnetic properties of the core-shell samples, particularly the sample ZnF@MgF, where it possesses magnetization higher than the pure ferrite phase (MgFe2O4) and Curie temperature (TCm) higher than the room temperature, and this is new for Zn-ferrite. Besides, the effective magnetic moment (µEff) and the Curie-Weiss constant (θ) were obtained from the magnetic susceptibility χ(T) protocols.

2021 ◽  
Author(s):  
Kheled Roumaih

Abstract The core-shell of nanoferrites showed quite different properties rather than the nanoferrites counterpart. The nanocomposites of NiFe2O4@MgFe2O4 (NiF@MgF) and ZnFe2O4@MgFe2O4 (ZnF@MgF) are chemically stable and showed very good dielectric and magnetic properties. In this investigation, the temperature-dependent dielectric constant, dielectric loss, and ac-electrical conductivity were measured up to 650 K under different alternating electric field frequencies from 100 Hz to 8 MHz. The obtained data revealed that the mutual effect between the core and the shell samples increases the space charge polarization. Also, the samples showed the semiconducting-metallic behavior which varies between SP, CBH, and QMT models according to the temperatures and the frequencies. Furthermore, the magnetization M(T) was studied of all samples using the Faraday balance method in the temperature range 300-500K. The experimental results of M(T) exhibit good magnetic properties of the core-shell samples, particularly the sample ZnF@MgF. The novelty in this work is an unexpected behavior of ZnF@MgF which possesses magnetization higher than the pure ferrite phase (MgFe2O4), and Curie temperature (TCm) higher than the room temperature. So, the sample ZnF@MgF is a ferrimagnetic substance. Besides, the effective magnetic moment (mEff) and the Curie-Weiss constant (q) for all samples were obtained from the magnetic susceptibility c(T) protocols.


2020 ◽  
Vol 65 (10) ◽  
pp. 904
Author(s):  
V. O. Zamorskyi ◽  
Ya. M. Lytvynenko ◽  
A. M. Pogorily ◽  
A. I. Tovstolytkin ◽  
S. O. Solopan ◽  
...  

Magnetic properties of the sets of Fe3O4(core)/CoFe2O4(shell) composite nanoparticles with a core diameter of about 6.3 nm and various shell thicknesses (0, 1.0, and 2.5 nm), as well as the mixtures of Fe3O4 and CoFe2O4 nanoparticles taken in the ratios corresponding to the core/shell material contents in the former case, have been studied. The results of magnetic research showed that the coating of magnetic nanoparticles with a shell gives rise to the appearance of two simultaneous effects: the modification of the core/shell interface parameters and the parameter change in both the nanoparticle’s core and shell themselves. As a result, the core/shell particles acquire new characteristics that are inherent neither to Fe3O4 nor to CoFe2O4. The obtained results open the way to the optimization and adaptation of the parameters of the core/shell spinel-ferrite-based nanoparticles for their application in various technological and biomedical domains.


2017 ◽  
Vol 31 (33) ◽  
pp. 1750307 ◽  
Author(s):  
Ersin Kantar

In this study, we examine by comparing the dynamic magnetic and hysteretic properties of Ising-type endohedral fullerene (EF) with various dopant magnetic particles confined within a spherical cage. The model of EF X@C[Formula: see text] with X = spin-1/2, spin-1 and spin-3/2 is proposed to study the effect of the nature of core particle on the magnetic properties. The results were obtained by mean-field theory as well as Glauber-type stochastic dynamics, and focused on the response of thermal and hysteretic behaviors of systems. The system exhibits second- and first-order phase transitions. In three different core cases, the system also exhibits type-II superconductivity behavior with a dynamic hysteresis curves of the core. All results display magnetic properties of the EF which strongly depend on the nature of core particle. Moreover, core particle and core/shell (C–S) interaction are proposed as the basic factors affecting the magnetic properties of EF system.


2019 ◽  
Vol 7 (5) ◽  
pp. 1280-1291 ◽  
Author(s):  
Alaka Panda ◽  
R. Govindaraj ◽  
R. Mythili ◽  
G. Amarendra

Bismuth and iron oxides subjected to ball milling followed by controlled annealing treatments showed the formation of core–shell nanostructures with Bi2Fe4O9 as the core and a shell of BiFeO3 and Bi25FeO40 phases as deduced based on the analysis of transmission electron microscopy results.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Dipti Rawat ◽  
P. B. Barman ◽  
Ragini Raj Singh

Abstract The selected and controlled preparation of core@shell nanostructures, which unite the multiple functions of ferromagnetic Ni-Zn ferrite core and CdS shell in a single material with tuneable fluorescence and magnetic properties, have been proposed by the seed mediated aqueous growth process. The shell particle thickness and core of nanostructures were precisely tuned. Current work exhibits the comparative study of core@shell multifunctional nanostructures where core being annealed at two different temperatures. The core@shell nanostructure formation was confirmed by complementary structural, elemental, optical, magnetic and IR measurements. Optical and magnetic characterizations were performed to study elaborative effects of different structural combinations of core@shell nanostructures to achieve best configuration with high-luminescence and magnetic outcomes. The interface of magnetic/nonmagnetic NiZnFe2O4/CdS nanostructures was inspected. Unexpectedly, in some of the core@shell nanostructures presence of substantial exchange-bias was observed in spite of the non-magnetic nature of CdS QDs which is clearly an “optically-active” and “magnetically-inactive” material. Presence of “exchange-bias” was confirmed by the change in “magnetic-anisotropy” as well as shift in susceptibility derivative. Finally, successful formulation of stable and efficient core@shell nanostructures achieved, which shows no exchange-bias and shift. Current findings suggest that these magneto-fluorescent nanostructures can be used in spintronics; and drug delivery-diagnosis-imaging applications in nanomedicine field.


2020 ◽  
Vol 62 (2) ◽  
pp. 285-290 ◽  
Author(s):  
D. A. Balaev ◽  
S. V. Semenov ◽  
A. A. Dubrovskii ◽  
A. A. Krasikov ◽  
S. I. Popkov ◽  
...  

2017 ◽  
Vol 899 ◽  
pp. 221-226 ◽  
Author(s):  
M.M. Lima ◽  
J.P.Z. Gonçalves ◽  
C. Soares ◽  
Humberto Gracher Riella ◽  
S.C. Fernandes ◽  
...  

Core–shell Fe2O3@C nanoparticles are very studied due to its biocompatibility with plant and animals cells and due its special properties of chemical adsorption. Thus, the definition of an easy synthesis method of these nanoparticles is very important to the scientific studies and to future applications of these materials. For example, the properties of these nanoparticles depend of the combination between some processing parameters, as the temperature, time, chemical composition, atmosphere and others. The mass yield of the synthesis processes depend of these parameters and are important information. In this work the effect of temperature and of the concentration of the iron precursor were evaluated on the characteristics of the proposed nanoparticles. The nanostructures of Fe2O3 coated with carbon (Fe2O3@C) were synthetized by adapted co-precipitation hydrothermal rote. In 40.0 ml of distilled water was added 1.800 g of glucose, 6.006 g of urea, 0.500 g of polyethylene Glycol (PEG 1500) and different concentrations of iron nitrate Fe (NO2)3.9H2O and different temperature values were applied. The Fe2O3@C core-shell were characterized by scanning electron microscopy (SEM/FEG), Energy Dispersive Scanning (EDS) and X-ray Diffractions (XRD). Results showed that nanoparticles form clusters with different sizes that are dependent on the temperature values and Fe (NO3)3.9H2O concentration. The core-shell mass has a linear relation with the iron precursor mass and the reaction temperatures influences the microstructure of the core-shell nanoparticles.


2013 ◽  
Vol 334-335 ◽  
pp. 19-25 ◽  
Author(s):  
S. Rostamzadehmansoor ◽  
Mirabdullah Seyed Sadjadi ◽  
K. Zare ◽  
Nazanin Farhadyar

Magnetic oxide nanoparticles with proper surface coatings are increasingly being evaluated for clinical applications such as hyperthermia, drug delivery, magnetic resonance imaging, transfection and cell/protein separations. In this work, we investigated synthesis, magnetic properties of silica coated metal ferrite, (CoFe2O4)/SiO2 and manganese doped cobalt ferrite nanoparticles (Mnx-Co1-xFe2O4 with x = 0.02, 0.04 and 0.06)/SiO2 for possible biomedical application. All the ferrites nanoparticles were prepared by co-precipitation method using FeCl3.6H2O, CoCl2.6H2O and MnCl2.2H2O as precursors, and were silica coated by the Stober process in directly ethanol. The composition, phase structure and morphology of the prepared core/shell cobalt ferrites nanostructures were characterized by powder X-ray diffraction (XRD), Fourier Transform infra-red spectra (FTIR), Field Emission Scanning Electron Microscopy and energy dispersive X-ray analysis (FESEM-EDAX). The results revealed that all the samples maintain the ferrite spinel structure. While, the cell parameters decrease monotonically by increase of Mn content indicating that the Mn ions are substituted into the lattice of CoFe2O4. The magnetic properties of the prepared samples were investigated at room temperature using Vibrating Sample Magnetometer (VSM). The results revealed a strong dependence of room temperature magnetic properties on (1) doping content, x; (2) particle size and ion distributions.


2017 ◽  
Vol 36 (4) ◽  
pp. 01 ◽  
Author(s):  
Vagner Sargentelli ◽  
Antônio A. P. Ferreira

Nanotechnology is the understanding and control f matter at dimensions of roughly 1 – 100 nm. At the nanoscale, the properties like electrical conductivity and mechanical strength are not the same as the materials with particles in dimensions much more than 100 nm. The electronic structure changes dramatically too. Between nanomaterials, there is recently a great number of works that investing as the synthesis as the properties of the magnetic nanoparticles. The interest in these materials is due to its magnetic applications. Some of more representative magnetic materials are the metallic oxides, as some ferrites. However, the ferrites are often obtained as mixture of some oxides, which implies that the magnetic properties are not always well defined and reproducible. Thus, the researches has been turned to use of the magnetic metals, between which the cobalt. The cobalt is investigated because its high magnetic susceptility. However, this transition metal is easily oxidate in air and is toxic to human organism. For this reason, it has looked for to effect synthesis involving core – shell structures, which no to allow the oxidation of the cobalt and prevent against its toxicity. Between the shells that come being obtained it is of silica and of gold. In addition, in if treating to catalysis in a general way, the price of the cobalt and its magnetic properties are adjusted for the attainment core – shell catalysts, Cocore@Ptshell, (Co@Pt). So, the aim of this article is to present and to do an analysis of the more representative synthetic route used until the present moment to obtain the core – shell structures: Co@SiO2, Co@Au and Co@Pt.


SPIN ◽  
2017 ◽  
Vol 07 (04) ◽  
pp. 1750011 ◽  
Author(s):  
A. Jabar ◽  
R. Masrour ◽  
M. Hamedoun ◽  
A. Benyoussef

A cylindrical ferrimagnetic magnetic nanowire system of core and shell layers has been investigated using Monte Carlo simulation. Critical temperature is obtained for different values of exchange couplings at the core–shell interface, at shell–shell and core–core. The total magnetization has been the determinate for different values of crystal field. Hysteresis loop, coercive field and remanent magnetization of a core and shell layers are obtained using the Monte Carlo simulation. A number of characteristic behaviors are found, such as the occurrence of single and triple hysteresis loops for appropriate values of crystal field, temperatures values and exchange interaction values.


Sign in / Sign up

Export Citation Format

Share Document