scholarly journals Caecal Microbiota Composition of Experimental Laying Hens Differs According to Genetic Line and Vaccination to IBV

Author(s):  
Marion Borey ◽  
Bertrand Bed'Hom ◽  
Nicolas Bruneau ◽  
Jordi Estellé ◽  
Frederik Larsen ◽  
...  

Abstract BackgroundInteractions between the gut microbiota and the immune system may be involved in the vaccine response. In the present study, we studied the correlations between caecal microbiota composition and the immune response in six experimental laying hen lines harboring different haplotypes at the Major Histocompatibility complex (MHC), 7 weeks after their first vaccination against the infectious bronchitis virus (IBV). Two lines were previously considered as high responders (HR) to IBV vaccination and two other ones as low responders (LR). We explored to what extent the gut microbiota could be related to this variability through the characterization of caecal bacterial communities with a 16S rRNA gene amplicon sequencing approach, one week after an IBV infectious challenge. ResultsWe observed significant effects of both the vaccination and the genetic line on the microbiota, with lower bacterial richness in vaccinated chickens, especially in the Ruminococcaceae family. We also observed dissimilar caecal communities among the different MHC lines, and among the vaccinated and non-vaccinated animals. The effect of vaccination was similar in all the lines, with a reduced abundance of OTUs from the Ruminococcacea UCG-014 and Faecalibacterium genera, and an increased abundance of OTUs from the Eisenbergiella genus. The main association between the microbiota and the immune phenotypes implied TCRϒδ expression on TCRϒδ+ T cells, which especially shared negative associations with OTUs from the Escherichia-Shigella genus. Finally, opposing the HR and LR groups, we identified 3 OTUs more abundant in the HR group, from the Tyzzeralla family, the Angelakisella genus, and to a lower extent the Flavonifractor family. Conversely, an OTU from the CAG-352 genus was more abundant in the LR group. ConclusionsWe assessed that the caecal microbiota composition is associated with the IBV vaccine response in laying chickens, and that TCRϒδ expression on TCRϒδ+ T cells appears as one of the main components potentially involved in this interaction.

Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 748 ◽  
Author(s):  
Jin-Young Lee ◽  
Mohamed Mannaa ◽  
Yunkyung Kim ◽  
Jehun Kim ◽  
Geun-Tae Kim ◽  
...  

The aim of this study was to investigate differences between the gut microbiota composition in patients with rheumatoid arthritis (RA) and those with osteoarthritis (OA). Stool samples from nine RA patients and nine OA patients were collected, and DNA was extracted. The gut microbiome was assessed using 16S rRNA gene amplicon sequencing. The structures and differences in the gut microbiome between RA and OA were analyzed. The analysis of diversity revealed no differences in the complexity of samples. The RA group had a lower Bacteroidetes: Firmicutes ratio than did the OA group. Lactobacilli and Prevotella, particularly Prevotella copri, were more abundant in the RA than in the OA group, although these differences were not statistically significant. The relative abundance of Bacteroides and Bifidobacterium was lower in the RA group. At the species level, the abundance of certain bacterial species was significantly lower in the RA group, such as Fusicatenibacter saccharivorans, Dialister invisus, Clostridium leptum, Ruthenibacterium lactatiformans, Anaerotruncus colihominis, Bacteroides faecichinchillae, Harryflintia acetispora, Bacteroides acidifaciens, and Christensenella minuta. The microbial properties of the gut differed between RA and OA patients, and the RA dysbiosis revealed results similar to those of other autoimmune diseases, suggesting that a specific gut microbiota pattern is related to autoimmunity.


2020 ◽  
Vol 8 (8) ◽  
pp. 1151
Author(s):  
Peris M. Munyaka ◽  
Fany Blanc ◽  
Jordi Estellé ◽  
Gaëtan Lemonnier ◽  
Jean-Jacques Leplat ◽  
...  

The gut microbiota comprises a large and diverse community of bacteria that play a significant role in swine health. Indeed, there is a tight association between the enteric immune system and the overall composition and richness of the microbiota, which is key in the induction, training and function of the host immunity, and may therefore, influence the immune response to vaccination. Using vaccination against Mycoplasma hyopneumoniae (M. hyo) as a model, we investigated the potential of early-life gut microbiota in predicting vaccine response and explored the post-vaccination dynamics of fecal microbiota at later time points. At 28 days of age (0 days post-vaccination; dpv), healthy piglets were vaccinated, and a booster vaccine was administered at 21 dpv. Blood samples were collected at 0, 21, 28, 35, and 118 dpv to measure M. hyo-specific IgG levels. Fecal samples for 16S rRNA gene amplicon sequencing were collected at 0, 21, 35, and 118 dpv. The results showed variability in antibody response among individual pigs, whilst pre-vaccination operational taxonomic units (OTUs) primarily belonging to Prevotella, [Prevotella], Anaerovibrio, and Sutterella appeared to best-predict vaccine response. Microbiota composition did not differ between the vaccinated and non-vaccinated pigs at post-vaccination time points, but the time effect was significant irrespective of the animals’ vaccination status. Our study provides insight into the role of pre-vaccination gut microbiota composition in vaccine response and emphasizes the importance of studies on full metagenomes and microbial metabolites aimed at deciphering the role of specific bacteria and bacterial genes in the modulation of vaccine response.


2020 ◽  
Vol 100 (7) ◽  
pp. 1181-1188
Author(s):  
Khaled F. A. Abdelrhman ◽  
Alice Ciofini ◽  
Giovanni Bacci ◽  
Cecilia Mancusi ◽  
Alessio Mengoni ◽  
...  

AbstractThe evaluation of symbiotic microbial communities occurring in the intestinal tract of animals has received great interest in recent years. However, little is known about gut microbial communities in cetaceans, despite their relevance in the ecology of marine communities. Here, we report an investigation using 16S rRNA gene amplicon sequencing of the resident gut microbiota of the two cetacean species Stenella coeruleoalba and Tursiops truncatus by sampling intestinal mucosa from specimens retrieved stranded along the Tyrrhenian coast of Tuscany (Italy). We found an abundance of members from Clostridiaceae and Fusobacteriaceae, which in total accounted for more than 50% of reads, in agreement with gut microbiota composition of other carnivorous mammals. Probably due to the limited number of samples available, sex, preservation status and also species, did not correlate with overall differences in the microbiota. Indeed, a high similarity of the taxonomic (family-level) composition between the gut microbiota of the two species was found. However, Pedobacter spp. was found abundant in amplicon sequencing libraries from S. coeruleoalba, while clostridia were more abundant from T. truncatus samples. Our results shed some light on the gut microbiota composition of two dolphin (S. coeruleoalba and T. truncatus) species, with specimens collected in the wild. Studies with a larger number of individuals are now needed to confirm these first results and evaluate the interspecific differences in relation to sex and age.


2020 ◽  
Vol 8 (5) ◽  
pp. 677 ◽  
Author(s):  
Monique J. T. Crobach ◽  
Quinten R. Ducarmon ◽  
Elisabeth M. Terveer ◽  
Celine Harmanus ◽  
Ingrid M. J. G. Sanders ◽  
...  

Gut microbiota composition in patients with Clostridioides difficile colonization is not well investigated. We aimed to identify bacterial signatures associated with resistance and susceptibility to C. difficile colonization (CDC) and infection (CDI). Therefore, gut microbiota composition from patients with CDC (n = 41), with CDI (n = 41), and without CDC (controls, n = 43) was determined through 16S rRNA gene amplicon sequencing. Bacterial diversity was decreased in CDC and CDI patients (p < 0.01). Overall microbiota composition was significantly different between control, CDC, and CDI patients (p = 0.001). Relative abundance of Clostridioides (most likely C. difficile) increased stepwise from controls to CDC and CDI patients. In addition, differential abundance analysis revealed that CDI patients’ gut microbiota was characterized by significantly higher relative abundance of Bacteroides and Veillonella than CDC patients and controls. Control patients had significantly higher Eubacterium hallii and Fusicatenibacter abundance than colonized patients. Network analysis indicated that Fusicatenibacter was negatively associated with Clostridioides in CDI patients, while Veillonella was positively associated with Clostridioides in CDC patients. Bacterial microbiota diversity decreased in both CDC and CDI patients, but harbored a distinct microbiota. Eubacterium hallii and Fusicatenibacter may indicate resistance against C. difficile colonization and subsequent infection, while Veillonella may indicate susceptibility to colonization and infection by C. difficile.


Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2308
Author(s):  
Annefleur M. Koopen ◽  
Nicolien C. de Clercq ◽  
Moritz V. Warmbrunn ◽  
Hilde Herrema ◽  
Mark Davids ◽  
...  

Plasma metabolites affect a range of metabolic functions in humans, including insulin sensitivity (IS). A subset of these plasma metabolites is modified by the gut microbiota. To identify potential microbial–metabolite pathways involved in IS, we investigated the link between plasma metabolites, gut microbiota composition, and IS, using the gold-standard for peripheral and hepatic IS measurement in a group of participants with metabolic syndrome (MetSyn). In a cross-sectional study with 115 MetSyn participants, fasting plasma samples were collected for untargeted metabolomics analysis and fecal samples for 16S rRNA gene amplicon sequencing. A two-step hyperinsulinemic euglycemic clamp was performed to assess peripheral and hepatic IS. Collected data were integrated and potential interdependence between metabolites, gut microbiota, and IS was analyzed using machine learning prediction models. Plasma metabolites explained 13.2% and 16.7% of variance in peripheral and hepatic IS, respectively. Fecal microbiota composition explained 4.2% of variance in peripheral IS and was not related to hepatic IS. Although metabolites could partially explain the variances in IS, the top metabolites related to peripheral and hepatic IS did not significantly correlate with gut microbiota composition (both on taxonomical level and alpha-diversity). However, all plasma metabolites could explain 18.5% of the variance in microbial alpha-diversity (Shannon); the top 20 metabolites could even explain 44.5% of gut microbial alpha-diversity. In conclusion, plasma metabolites could partially explain the variance in peripheral and hepatic IS; however, these metabolites were not directly linked to the gut microbiota composition, underscoring the intricate relation between plasma metabolites, the gut microbiota, and IS in MetSyn


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Mohanraj Gunasekaran ◽  
Maya Lalzar ◽  
Yehonatan Sharaby ◽  
Ido Izhaki ◽  
Malka Halpern

AbstractSunbirds feed on tobacco tree nectar which contains toxic nicotine and anabasine secondary metabolites. Our aim was to understand the effect of nicotine and anabasine on the gut microbiota composition of sunbirds. Sixteen captive sunbirds were randomly assigned to two diets: artificial nectar either with (treatment) or without (control) added nicotine and anabasine. Excreta were collected at 0, 2, 4 and 7 weeks of treatment and samples were processed for bacterial culture and high-throughput amplicon sequencing of the 16S rRNA gene. The gut microbiome diversity of the treated and control birds changed differently along the seven-week experiment. While the diversity decreased in the control group along the first three samplings (0, 2 and 4 weeks), it increased in the treatment group. The microbiota composition analyses demonstrated that a diet with nicotine and anabasine, significantly changed the birds’ gut microbiota composition compared to the control birds. The abundance of nicotine- and anabasine- degrading bacteria in the excreta of the treated birds, was significantly higher after four and seven weeks compared to the control group. Furthermore, analysis of culturable isolates, including Lactococcus, showed that sunbirds’ gut-associated bacteria were capable of degrading nicotine and anabasine, consistent with their hypothesised role as detoxifying and nutritional symbionts.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Louise B. Thingholm ◽  
Corinna Bang ◽  
Malte C. Rühlemann ◽  
Annika Starke ◽  
Florian Sicks ◽  
...  

AbstractCompared to the huge microbial diversity in most mammals, human gut microbiomes have lost diversity while becoming specialized for animal-based diets – especially compared to chimps, their genetically closest ancestors. The lowered microbial diversity within the gut of westernized populations has also been associated with different kinds of chronic inflammatory diseases in humans. To further deepen our knowledge on phylogenetic and ecologic impacts on human health and fitness, we established the herein presented biobank as well as its comprehensive microbiota analysis. In total, 368 stool samples from 38 different animal species, including Homo sapiens, belonging to four diverse mammalian orders were collected at seven different locations and analyzed by 16S rRNA gene amplicon sequencing. Comprehensive data analysis was performed to (i) determine the overall impact of host phylogeny vs. diet, location, and ecology and to (ii) examine the general pattern of fecal bacterial diversity across captive mammals and humans.By using a controlled study design with captive mammals we could verify that host phylogeny is the most dominant driver of mammalian gut microbiota composition. However, the effect of ecology appears to be able to overcome host phylogeny and should therefore be studied in more detail in future studies. Most importantly, our study could observe a remarkable decrease of Spirochaetes and Prevotella in westernized humans and platyrrhines, which is probably not only due to diet, but also to the social behavior and structure in these communities.Our study highlights the importance of phylogenetic relationship and ecology within the evolution of mammalian fecal microbiota composition. Particularly, the observed decrease of Spirochaetes and Prevotella in westernized communities might be associated to lifestyle dependent rapid evolutionary changes, potentially involved in the establishment of dysbiotic microbiomes, which promote the etiology of chronic diseases.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lito E. Papanicolas ◽  
Sarah K. Sims ◽  
Steven L. Taylor ◽  
Sophie J. Miller ◽  
Christos S. Karapetis ◽  
...  

Abstract Background The gut microbiota influences many aspects of host physiology, including immune regulation, and is predictive of outcomes in cancer patients. However, whether conventional myelosuppressive chemotherapy affects the gut microbiota in humans with non-haematological malignancy, independent of antibiotic exposure, is unknown. Methods Faecal samples from 19 participants with non-haematological malignancy, who were receiving conventional chemotherapy regimens but not antibiotics, were examined prior to chemotherapy, 7–12 days after chemotherapy, and at the end of the first cycle of treatment. Gut microbiota diversity and composition was determined by 16S rRNA gene amplicon sequencing. Results Compared to pre-chemotherapy samples, samples collected 7–12 days following chemotherapy exhibited increased richness (mean 120 observed species ± SD 38 vs 134 ± 40; p = 0.007) and diversity (Shannon diversity: mean 6.4 ± 0.43 vs 6.6 ± 0.41; p = 0.02). Composition was significantly altered, with a significant decrease in the relative abundance of gram-positive bacteria in the phylum Firmicutes (pre-chemotherapy median relative abundance [IQR] 0.78 [0.11] vs 0.75 [0.11]; p = 0.003), and an increase in the relative abundance of gram-negative bacteria (Bacteroidetes: median [IQR] 0.16 [0.13] vs 0.21 [0.13]; p = 0.01 and Proteobacteria: 0.015 [0.018] vs 0.03 [0.03]; p = 0.02). Differences in microbiota characteristics from baseline were no longer significant at the end of the chemotherapy cycle. Conclusions Conventional chemotherapy results in significant changes in gut microbiota characteristics during the period of predicted myelosuppression post-chemotherapy. Further study is indicated to link microbiome changes during chemotherapy to clinical outcomes.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 482
Author(s):  
Jae-Kwon Jo ◽  
Seung-Ho Seo ◽  
Seong-Eun Park ◽  
Hyun-Woo Kim ◽  
Eun-Ju Kim ◽  
...  

Obesity can be caused by microbes producing metabolites; it is thus important to determine the correlation between gut microbes and metabolites. This study aimed to identify gut microbiota-metabolomic signatures that change with a high-fat diet and understand the underlying mechanisms. To investigate the profiles of the gut microbiota and metabolites that changed after a 60% fat diet for 8 weeks, 16S rRNA gene amplicon sequencing and gas chromatography-mass spectrometry (GC-MS)-based metabolomic analyses were performed. Mice belonging to the HFD group showed a significant decrease in the relative abundance of Bacteroidetes but an increase in the relative abundance of Firmicutes compared to the control group. The relative abundance of Firmicutes, such as Lactococcus, Blautia, Lachnoclostridium, Oscillibacter, Ruminiclostridium, Harryflintia, Lactobacillus, Oscillospira, and Erysipelatoclostridium, was significantly higher in the HFD group than in the control group. The increased relative abundance of Firmicutes in the HFD group was positively correlated with fecal ribose, hypoxanthine, fructose, glycolic acid, ornithine, serum inositol, tyrosine, and glycine. Metabolic pathways affected by a high fat diet on serum were involved in aminoacyl-tRNA biosynthesis, glycine, serine and threonine metabolism, cysteine and methionine metabolism, glyoxylate and dicarboxylate metabolism, and phenylalanine, tyrosine, and trypto-phan biosynthesis. This study provides insight into the dysbiosis of gut microbiota and metabolites altered by HFD and may help to understand the mechanisms underlying obesity mediated by gut microbiota.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yan Hui ◽  
Paulina Tamez-Hidalgo ◽  
Tomasz Cieplak ◽  
Gizaw Dabessa Satessa ◽  
Witold Kot ◽  
...  

Abstract Background The direct use of medical zinc oxide in feed will be abandoned after 2022 in Europe, leaving an urgent need for substitutes to prevent post-weaning disorders. Results This study investigated the effect of using rapeseed-seaweed blend (rapeseed meal added two brown macroalgae species Ascophylum nodosum and Saccharina latissima) fermented by lactobacilli (FRS) as feed ingredients in piglet weaning. From d 28 of life to d 85, the piglets were fed one of three different feeding regimens (n = 230 each) with inclusion of 0%, 2.5% and 5% FRS. In this period, no significant difference of piglet performance was found among the three groups. From a subset of piglets (n = 10 from each treatment), blood samples for hematology, biochemistry and immunoglobulin analysis, colon digesta for microbiome analysis, and jejunum and colon tissues for histopathological analyses were collected. The piglets fed with 2.5% FRS manifested alleviated intraepithelial and stromal lymphocytes infiltration in the gut, enhanced colon mucosa barrier relative to the 0% FRS group. The colon microbiota composition was determined using V3 and V1-V8 region 16S rRNA gene amplicon sequencing by Illumina NextSeq and Oxford Nanopore MinION, respectively. The two amplicon sequencing strategies showed high consistency between the detected bacteria. Both sequencing strategies indicated that inclusion of FRS reshaped the colon microbiome of weaned piglets with increased Shannon diversity. Prevotella stercorea was verified by both methods to be more abundant in the piglets supplied with FRS feed, and its abundance was positively correlated with colonic mucosa thickness but negatively correlated with blood concentrations of leucocytes and IgG. Conclusions FRS supplementation relieved the gut lymphocyte infiltration of the weaned piglets, improved the colon mucosa barrier with altered microbiota composition. Increasing the dietary inclusion of FRS from 2.5% to 5% did not lead to further improvements.


Sign in / Sign up

Export Citation Format

Share Document