scholarly journals Promising Eco-Friendly Biomaterials for Future Biomedicine: Cleaner Production and Applications of Nanocellulose

Author(s):  
Reshmy R ◽  
Eapen Philip ◽  
Aravind Madhavan ◽  
Arun K B ◽  
Sindhu Raveendran ◽  
...  

Abstract Cellulose nanomaterials are developing nowadays as a promising environmental friendlier biomaterial that can be extracted from native plant sources. These materials, because of their excellent physico-chemical and biological properties, urged much interest in biomedical applications. In this paper a detailed review on nanocellulose is provided with special emphasis on greener production, demands, bio-properties and innovative application in some selected biomedical fields such as tissue implants, drug delivery systems, wound healing and biosensor applications. The current state of global commercial nanocellulose based product and its future potentials for biomedical applications are also discussed.

Author(s):  
Yogita Patil-Sen

Nano0technology has received considerable attention and interest over the past few decades in the field of biomedicine due to the wide range of applications it provides in disease diagnosis, drug design and delivery, biomolecules detection, tissue engineering and regenerative medicine. Ultra-small size and large surface area of nanomaterials prove to be greatly advantageous for their biomedical applications. Moreover, the physico-chemical and thus, the biological properties of nanomaterials can be manipulated depending on the application. However, stability, efficacy and toxicity of nanoparticles remain challenge for researchers working in this area. This mini-review highlights the recent advances of various types of nanoparticles in biomedicine and will be of great value to researchers in the field of materials science, chemistry, biology and medicine.


2022 ◽  
pp. 33-51
Author(s):  
Bishweshwar Pant ◽  
Mira Park

Nanofiber systems with various composition and biological properties have been extensively studied for various biomedical applications. The electrospinning process has been regarded as one of the versatile techniques to prepare nano to microfibers. The electrospun nanofibers are being used especially in textile industries, sensors, filters, protective clothing, energy storage materials, and biomedical applications. In the last decade, electrospun nanofibers have been highly investigated for drug delivery systems to achieve a therapeutic effect in specifically targeted sites. Various drugs or biomolecules can be easily loaded into the electrospun nanofibers by direct or indirect methods. The proper selection of polymers (or blends of various polymers), drugs, solvents to prepare the composite nanofibers with desired morphology are the tools in enhancing the bioavailability, stability, and bioactivity of drugs.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 156 ◽  
Author(s):  
Ana Zugic ◽  
Vanja Tadic ◽  
Snezana Savic

Usnic acid is one of the most investigated lichen secondary metabolites, with several proven biological properties with potential medical relevance. However, its unfavorable physico-chemical properties, as well as observed hepatotoxicity, have discouraged wide-range utilization of usnic acid as a promising therapeutic agent. In accordance with the growing research interest in the development of nanotechnology, especially in the arena of preparations based on natural sources of medicinal compounds, usnic acid incorporated into nano- and microsized colloidal carriers has been a subject of a large number of publications. Therefore, this review discusses the overall results of the studies dealing with usnic acid encapsulated into lipid-based, polymeric and nonorganic micro- and/or nanocarriers, as potential drug delivery systems for this natural compound, in an attempt to introduce its usage as a potential antitumor, antimicrobial, wound-healing, antioxidative and anti-inflammatory drug.


Prosthesis ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 117-139 ◽  
Author(s):  
Masoud Delfi ◽  
Matineh Ghomi ◽  
Ali Zarrabi ◽  
Reza Mohammadinejad ◽  
Zahra Baghban Taraghdari ◽  
...  

The use of polymers and nanomaterials has vastly grown for industrial and biomedical sectors during last years. Before any designation or selection of polymers and their nanocomposites, it is vital to recognize the targeted applications which require these platforms to be modified. Surface functionalization to introduce the desired type and quantity of reactive functional groups to target a cell or tissue in human body is a pivotal approach to improve the physicochemical and biological properties of these materials. Herein, advances in the functionalized polymer and nanomaterials surfaces are highlighted along with their applications in biomedical fields, e.g., antimicrobial therapy and drug delivery.


2020 ◽  
Vol 27 (28) ◽  
pp. 4584-4592 ◽  
Author(s):  
Avik Khan ◽  
Baobin Wang ◽  
Yonghao Ni

Regenerative medicine represents an emerging multidisciplinary field that brings together engineering methods and complexity of life sciences into a unified fundamental understanding of structure-property relationship in micro/nano environment to develop the next generation of scaffolds and hydrogels to restore or improve tissue functions. Chitosan has several unique physico-chemical properties that make it a highly desirable polysaccharide for various applications such as, biomedical, food, nutraceutical, agriculture, packaging, coating, etc. However, the utilization of chitosan in regenerative medicine is often limited due to its inadequate mechanical, barrier and thermal properties. Cellulosic nanomaterials (CNs), owing to their exceptional mechanical strength, ease of chemical modification, biocompatibility and favorable interaction with chitosan, represent an attractive candidate for the fabrication of chitosan/ CNs scaffolds and hydrogels. The unique mechanical and biological properties of the chitosan/CNs bio-nanocomposite make them a material of choice for the development of next generation bio-scaffolds and hydrogels for regenerative medicine applications. In this review, we have summarized the preparation method, mechanical properties, morphology, cytotoxicity/ biocompatibility of chitosan/CNs nanocomposites for regenerative medicine applications, which comprises tissue engineering and wound dressing applications.


2019 ◽  
Vol 26 (38) ◽  
pp. 6834-6850 ◽  
Author(s):  
Mohammad Omaish Ansari ◽  
Kalamegam Gauthaman ◽  
Abdurahman Essa ◽  
Sidi A. Bencherif ◽  
Adnan Memic

: Nanobiotechnology has huge potential in the field of regenerative medicine. One of the main drivers has been the development of novel nanomaterials. One developing class of materials is graphene and its derivatives recognized for their novel properties present on the nanoscale. In particular, graphene and graphene-based nanomaterials have been shown to have excellent electrical, mechanical, optical and thermal properties. Due to these unique properties coupled with the ability to tune their biocompatibility, these nanomaterials have been propelled for various applications. Most recently, these two-dimensional nanomaterials have been widely recognized for their utility in biomedical research. In this review, a brief overview of the strategies to synthesize graphene and its derivatives are discussed. Next, the biocompatibility profile of these nanomaterials as a precursor to their biomedical application is reviewed. Finally, recent applications of graphene-based nanomaterials in various biomedical fields including tissue engineering, drug and gene delivery, biosensing and bioimaging as well as other biorelated studies are highlighted.


2020 ◽  
Vol 21 ◽  
Author(s):  
Dickson Pius Wande ◽  
Qin Cui ◽  
Shijie Chen ◽  
Cheng Xu ◽  
Hui Xiong ◽  
...  

: As a unique and pleiotropic polymer, d-alpha-tocopheryl polyethylene glycol succinate (Tocophersolan) is a polymeric synthetic version of vitamin E. Tocophersolan has attracted enormous attention as a versatile excipient in different biomedical applications including drug delivery systems and nutraceuticals. The multiple inherent properties of Tocophersolan make it play flexible roles in drug delivery system design, including excipients with outstanding biocompatibility, solubilizer with the ability of promoting drug dissolution, drug permeation enhancer, P-glycoprotein inhibitor and anticancer compound. For these reasons, Tocophersolan has been widely used for improving the bioavailability of numerous pharmaceutical active ingredients. Tocophersolan has been approved by stringent regulatory authorities (such as US FDA, EMA, and PMDA) as a safe pharmaceutical excipient. In this review, we systematically curated current advances in nano-based delivery systems consisting of Tocophersolan with possibilities for futuristic applications in drug delivery, gene therapy, and nanotheranostic.


2019 ◽  
Vol 15 (4) ◽  
pp. 312-318
Author(s):  
Shuoye Yang

Background: The therapeutic ability and application of antifungal peptide (APs) are limited by their physico-chemical and biological properties, the nano-liposomal encapsulation would improve the in vivo circulation and stability. </P><P> Objective: To develop a long-circulating liposomal delivery systems encapsulated APs-CGA-N12 with PEGylated lipids and cholesterol, and investigated through in vivo pharmacokinetics. Methods: The liposomes were prepared and characterized, a rapid and simple liquid chromatographytandem mass spectrometry (LC-MS/MS) assay was developed for the determination of antifungal peptide in vivo, the pharmacokinetic characteristics of APs liposomes were evaluated in rats. Results: Liposomes had a large, unilamellar structure, particle size and Zeta potential ranged from 160 to 185 nm and -0.55 to 1.1 mV, respectively. The results indicated that the plasma concentration of peptides in reference solutions rapidly declined after intravenous administration, whereas the liposomeencapsulated ones showed slower elimination. The AUC(0-∞) was increased by 3.0-fold in liposomes in comparison with standard solution (20 mg·kg-1), the half-life (T1/2) was 1.6- and 1.5-fold higher compared to the reference groups of 20 and 40 mg·kg-1, respectively. Conclusion: Therefore, it could be concluded that liposomal encapsulation effectively improved the bioavailability and pharmacokinetic property of antifungal peptides.


2020 ◽  
Vol 16 (5) ◽  
pp. 685-707 ◽  
Author(s):  
Amna Batool ◽  
Farid Menaa ◽  
Bushra Uzair ◽  
Barkat Ali Khan ◽  
Bouzid Menaa

: The pace at which nanotheranostic technology for human disease is evolving has accelerated exponentially over the past five years. Nanotechnology is committed to utilizing the intrinsic properties of materials and structures at submicroscopic-scale measures. Indeed, there is generally a profound influence of reducing physical dimensions of particulates and devices on their physico-chemical characteristics, biological properties, and performance. The exploration of nature’s components to work effectively as nanoscaffolds or nanodevices represents a tremendous and growing interest in medicine for various applications (e.g., biosensing, tunable control and targeted drug release, tissue engineering). Several nanotheranostic approaches (i.e., diagnostic plus therapeutic using nanoscale) conferring unique features are constantly progressing and overcoming all the limitations of conventional medicines including specificity, efficacy, solubility, sensitivity, biodegradability, biocompatibility, stability, interactions at subcellular levels. : This review introduces two major aspects of nanotechnology as an innovative and challenging theranostic strategy or solution: (i) the most intriguing (bare and functionalized) nanomaterials with their respective advantages and drawbacks; (ii) the current and promising multifunctional “smart” nanodevices.


1999 ◽  
Vol 64 (8) ◽  
pp. 1211-1252 ◽  
Author(s):  
Jan Hlaváček ◽  
Renáta Marcová

The first part of this review deals with the biosynthesis and a biological function of strongly vasoactive peptides named endothelins (ETs) including vasoactive intestinal contractor. Where it was useful, snake venoms sarafotoxins which are structural endothelin derivatives, were also mentioned. In the second part, an attention is paid to structural basis of the ETs biological activity, with respect to alterations of amino acid residues in the parent peptides modifying the conformation and consequently the physico-chemical and biological properties in corresponding ETs analogs. Special attention is focussed on the area of ETs receptors and their interaction with peptide and non peptide agonists and antagonists, important in designing selective inhibitors of ETs receptors potentially applicable as drugs in a medicine. A review with 182 references.


Sign in / Sign up

Export Citation Format

Share Document