scholarly journals Removal of Organic Pollutantsfrom Produced Water by Batch Adsorption Treatment

Author(s):  
Eman Hashim Khader ◽  
Thamer Jassim Mohammed ◽  
Nourollah Mirghaffari ◽  
ali Dawood Salman ◽  
Tatjána Juzsakova ◽  
...  

Abstract This paper investigates the adsorption of oil, chemical oxygen demand (COD) and turbidity of the produced water (PW) which accompanies the oil exploration and production after treatment by using powdered activated carbon (PAC), clinoptilolite natural zeolite (CNZ) and synthetic zeolite type X (XSZ). Moreover, the paper deals with the comparison of pollutant removal over different adsorbents. Sorption was carried out in batch sorption system. The operating factors including adsorbent dosage, time, pH, oil concentration and temperature were investigated to determine the optimum operational conditions. Three adsorption isotherm models (Langmuir, Freundlich and Temkin models) were applied. The kinetics of the oil sorption and the change in COD content over on PAC and CNZ were studied by using pseudo-first order and pseudo-second order kinetics models. Maximum oil removal efficiencies (99.57, 95.87 and 99.84%), COD and total petroleum hydrocarbon (TPH), respectively were found at PAC adsorbent dose of 0.25 g/100 mL. However, maximum turbidity removal efficiency (99.97%) was obtained when zeolite X was used at 0.25g/100 mL concentration. It is not very different from that obtained over PAC (99.65%). The results proved that adsorption over PAC is most effective compared to zeolites in the removal of organic pollutants from PW. Also, regeneration of the consumed adsorbents was carried out in this work to find out the possibility of reusing the adsorbents. The consumed powdered activated carbon and zeolites can be effectively regenerated and reused by chemical treatment and thermal treatment respectively.

Author(s):  
Eman Hashim Khader ◽  
Thamer Jassim Mohammed ◽  
Nourollah Mirghaffari ◽  
Ali Dawood Salman ◽  
Tatjána Juzsakova ◽  
...  

AbstractThis paper studied the adsorption of chemical oxygen demand (COD), oil and turbidity of the produced water (PW) which accompanies the production and reconnaissance of oil after treating utilizing powdered activated carbon (PAC), clinoptilolite natural zeolite (CNZ) and synthetic zeolite type X (XSZ). Moreover, the paper deals with the comparison of pollutant removal over different adsorbents. Adsorption was executed in a batch adsorption system. The effects of adsorbent dosage, time, pH, oil concentration and temperature were studied in order to find the best operating conditions. The adsorption isotherm models of Langmuir, Freundlich and Temkin were investigated. Using pseudo-first-order and pseudo-second-order kinetic models, the kinetics of oil sorption and the shift in COD content on PAC and CNZ were investigated. At a PAC adsorbent dose of 0.25 g/100 mL, maximum oil removal efficiencies (99.57, 95.87 and 99.84 percent), COD and total petroleum hydrocarbon (TPH) were identified. Moreover, when zeolite X was used at a concentration of 0.25 g/100 mL, the highest turbidity removal efficiency (99.97%) was achieved. It is not dissimilar to what you would get with PAC (99.65 percent). In comparison with zeolites, the findings showed that adsorption over PAC is the most powerful method for removing organic contaminants from PW. In addition, recycling of the consumed adsorbents was carried out in this study to see whether the adsorbents could be reused. Chemical and thermal treatment will effectively regenerate and reuse powdered activated carbon and zeolites that have been eaten. Graphic abstract


Author(s):  
Rajani Ghaju Shrestha ◽  
Daisuke Inoue ◽  
Michihiko Ike

Abstract A constructed wetland (CW) is a low-cost, eco-friendly, easy-to-maintain, and widely applicable technology for treating various pollutants in the waste landfill leachate. This study determined the effects of the selection and compiling strategy of substrates used in CWs on the treatment performance of a synthetic leachate containing bisphenol A (BPA) as a representative recalcitrant pollutant. We operated five types of lab-scale vertical-flow CWs using only gravel (CW1), a sandwich of gravel with activated carbon (CW2) or brick crumbs (CW3), and two-stage hybrid CWs using gravel in one column and activated carbon (CW4) or brick crumbs (CW5) in another to treat synthetic leachate containing BPA in a 7-d sequential batch mode for 5 weeks. CWs using activated carbon (CW2 and CW4) effectively removed ammonium nitrogen (NH4-N) (99–100%), chemical oxygen demand (COD) (93–100%), and BPA (100%), indicating that the high adsorption capacity of activated carbon was the main mechanism involved in their removal. CW5 also exhibited higher pollutant removal efficiencies (NH4-N: 94–99%, COD: 89–98%, BPA: 89–100%) than single-column CWs (CW1 and CW3) (NH4-N: 76–100%, COD: 84–100%, BPA: 51–100%). This indicates the importance of the compiling strategy along with the selection of an appropriate substrate to improve the pollutant removal capability of CWs.


Author(s):  
Muhmmad Ilyas ◽  
Waqas Ahmad ◽  
Hizbullah Khan

Abstract Serious environmental deterioration caused by synthetic waste plastics, and the pollution of freshwater resources are the most alarming and remarkable challenges of the 21st century. Therefore, immense scientific efforts are being paid towards the management of waste plastics and treatment of polluted water. The current study is report the utilization of waste polyethylene terephthalate (wPET) and waste polystyrene (wPS) for fabrication of activated carbon (AC) and its application for the removal of hazardous polycyclic aromatic hydrocarbons (PAHs) pollutants from water. AC was prepared from wPET and wPS by carbonization under N2 atmosphere followed by chemical activation with 1M KOH and 1M HCl. The AC was characterized by SEM, surface area analysis (SAA), and FT-IR spectroscopy. Adsorption of PAHs from aqueous solutions through AC was examined by batch adsorption tests. The optimum parameters for maximum adsorption of PAHs were found to be; initial PAHs concentration 40 ppm, 2 h contact time, pH 3, 5, and 7, 50 °C temperature and adsorbent dose of 0.8 g. Kinetic and isotherm models were applied to evaluate the adsorbent capacity for PAHs adsorption. The kinetic study shows that the adsorption of these PAHs onto AC follows the pseudo-second-order kinetics. The experimental results demonstrated that Langmuir isotherm model best fitted the data. The thermodynamic factors calculated such as entropy change (ΔS°), enthalpy change (ΔS°) and free energy change (ΔG°) show that the adsorption process is non-spontaneous and endothermic in nature. Results were also compared with the efficiencies of some commercial adsorbents used in practice. This examination revealed that the novel plastic derived AC possesses a large potential for elimination and recovery of PAHs elimination from industrial wastewater.


Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 3023
Author(s):  
Liliana San-Pedro ◽  
Roger Méndez-Novelo ◽  
Emanuel Hernández-Núñez ◽  
Manuel Flota-Bañuelos ◽  
Jorge Medina ◽  
...  

Sanitary landfill leachates usually have characteristics that depend on the region where they are generated and according to the age of the landfill, which is why a unique treatment for their sanitation has not been found. However, the adsorption preceded by the Fenton process has been proven to be highly efficient at removing contaminants. In this study, the adsorptive capacity of two types of activated carbon, granular and powdered, was analyzed to determine which was more efficient in the adsorption stage in the Fenton-adsorption process. Likewise, its behavior was analyzed using three isotherm models (Langmuir, Freundlich and Temkin), testing the raw leachate and the Fenton-treated one with both carbons. The adsorption that is carried out on the carbons is better adjusted to the Freundlich and Temkin models. It concludes that multilayers, through the physical adsorption, carry out the adsorption of pollutants on the surface of the carbons. The results show that, statistically, granular activated carbon is more efficient at removing chemical oxygen demand (COD), and powdered activated carbon removes color better. Finally, an adsorption column was designed for the Fenton-adsorption process that was able to remove 21.68 kgCOD/kg carbon. Removal efficiencies for color and COD were >99%.


2016 ◽  
Vol 177 ◽  
pp. 45-52 ◽  
Author(s):  
Jingyi Hu ◽  
Annelies Aarts ◽  
Ran Shang ◽  
Bas Heijman ◽  
Luuk Rietveld

2016 ◽  
Vol 7 (1) ◽  
pp. 97-102 ◽  
Author(s):  
Am Jang ◽  
Jong-Tae Jung ◽  
Hayoung Kang ◽  
Hyung-Soo Kim ◽  
Jong-Oh Kim

We evaluate the applicability of a reverse osmosis (RO) system that combines powdered activated carbon (PAC) and ultrafiltration (UF) to treat the effluent discharged from tannery wastewater treatment plants. Conventional treatment processes such as neutralization, clariflocculation, and biological processes are used to clean the effluent before feeding to the PAC and UF combined RO system. The efficiency of the combined system was evaluated using the chemical oxygen demand Mn (CODMn), color, pH, turbidity, total nitrogen, total phosphate, and conductivity. The PAC was effective in greatly reducing the CODMn and color. The turbidity and silt density index of the UF permeate satisfied the water quality indices required for the RO feed. The RO system was constantly maintained at approximately 75% RO recovery, and the RO permeate satisfied the water quality requirements for reusing the processed water. Therefore, the PAC-UF combined RO system can be used to process effluent discharged from tannery wastewater treatment plants for reuse.


2008 ◽  
Vol 58 (5) ◽  
pp. 1129-1135 ◽  
Author(s):  
D. Simazaki ◽  
J. Fujiwara ◽  
S. Manabe ◽  
M. Matsuda ◽  
M. Asami ◽  
...  

Removal property of nine pharmaceuticals (clofibric acid, diclofenac, fenoprofen, gemfibrozil, ibuprofen, indomethacin, ketoprofen, naproxen and propyphenazone) by chlorination, coagulation–sedimentation and powdered activated carbon treatment was examined by laboratory-scale experiments under the conditions close to actual drinking water treatment processes. Indomethacin and propyphenazone were completely degraded by chlorination within 30 minutes, but others remained around 30% (naproxen and diclofenac) or more than 80% of the initial concentration after 24 hours. A couple of unidentified peaks in a chromatogram of the chlorinated samples suggested the formation of unknown chlorination by-products. Competitive adsorption was observed when the mixed solution of the target pharmaceuticals was subjected to batch adsorption test with powdered activated carbon. Clofibric acid and ibuprofen, which were relatively less hydrophobic among the nine compounds, persisted around 60% of the initial concentration after 3 hours of contact time. Removal performance in actual drinking water treatment would become lower due to existence of other competitive substances in raw water (e.g. natural organic matter). Coagulation–sedimentation using polyaluminium chloride hardly removed most of the pharmaceuticals even under its optimal dose for turbidity removal. It is suggested that the most part of pharmaceuticals in raw water might persist in the course of conventional drinking water treatments.


2012 ◽  
Vol 65 (9) ◽  
pp. 1540-1547 ◽  
Author(s):  
B. E. L. Baêta ◽  
R. L. Ramos ◽  
D. R. S. Lima ◽  
S. F. Aquino

This work investigated the use of submerged anaerobic membrane bioreactors (SAMBRs) in the presence and absence of powdered activated carbon (PAC) for the treatment of genuine textile wastewater. The reactors were operated at 35 °C with an HRT of 24 h and the textile effluent was diluted (1:10) with nutrient solution containing yeast extract as the source of the redox mediation riboflavin. The results showed that although both SAMBRs exhibited an excellent performance, the presence of PAC inside SAMBR-1 enhanced reactor stability and removal efficiency of chemical oxygen demand (COD), volatile fatty acids (VFA), turbidity and color. The median removal efficiencies of COD and color in SAMBR-1 were, 90 and 94% respectively; whereas for SAMBR-2 (without PAC) these values were 79 and 86%, In addition, the median values of turbidity and VFA were 8 NTU and 8 mg/L for SAMBR-1 and 14 NTU and 26 mg/L for SAMBR-2, indicating that the presence of PAC inside SAMBR-1 led to the production of an anaerobic effluent of high quality regarding such parameters.


Author(s):  
Kammegne Adelaide Maguie ◽  
Ndi Julius Nsami ◽  
Kouotou Daouda ◽  
Che Nangah Randy ◽  
Ketcha Joseph Mbadcam

<p>The adsorption of Cu2+ions on activated carbon based canarium schweinfurthii impregnated with ZnCl2 was studied. The shells of canarium schweinfurthii were impregnated with ZnCl2 at varying ZnCl2 concentrations, temperature, residence time while keeping the heating rate fixed at 10 °C / min and the ratio of impregnation of 1:1. The activated carbon with the highest surface area in term of iodine number of 860,817 mg/g, the highest methylene blue of 741,6 mg/g and 74,66 % of yield of carbon was obtained at 650 °C, 60 % ZnCl 2 and 30min. From the batch adsorption studies, the equilibrium time was found to be 40 min. Analysis of equilibrium isotherm models revealed a good correlation of the experimental data with the Tempkin (R 2 = 0.909) model. This confirms a high affinity of the activated carbon for Cu 2+ ions on the heterogeneous surface. The value of energy obtained from the Tempkin model was 60,606 J/mol and the presence of pics between 487 cm-1 to 871 cm-1 indicating that physisorption and chemisorption were taking place during this sorption. The pseudo-second order kinetics(R 2 = 0.999) governs the adsorption of Cu2+ions on this activated carbon.</p>


Sign in / Sign up

Export Citation Format

Share Document