scholarly journals The C-terminal fragment of LRRK2 with the G2019S substitution increases the neurotoxicity of mutant A53T α-synuclein in dopaminergic neurons in vivo

2020 ◽  
Author(s):  
Noémie Cresto ◽  
Camille Gardier ◽  
Marie-Claude Gaillard ◽  
Francesco Gubinelli ◽  
Pauline Roost ◽  
...  

Abstract Background: Alpha-synuclein (α-syn) and leucine-rich repeat kinase 2 (LRRK2) likely play crucial roles both in sporadic and familial forms of Parkinson’s disease (PD). The most prevalent mutation in LRRK2 is the G2019S substitution, which induces neurotoxicity through increased kinase activity. There is likely an interplay between LRRK2 and α-syn involved in the neurodegeneration of dopaminergic (DA) neurons in the substantia nigra (SNpc) in PD. However, the mechanisms underlying this interplay are ill-defined. Here, we investigated whether LRRK2 G2019S can increase the neurotoxicity induced by a mutant form of α-syn (A53T mutation) in DA neurons in vivo . Methods: We used a co-transduction approach with adeno-associated virus (AAV), AAV2/6 vectors encoding human α-syn A53T and the C-terminal portion of LRRK2 (ΔLRRK2), which contains the kinase domain, with either the G2019S mutation (ΔLRRK2 G2019S ) alone or the D1994A mutation (ΔLRRK2 G2019S/D1994A ), which inactivates the kinase activity of LRRK2. The AAVs were co-injected into the rat SNpc and histological evaluation was performed at 6- and 15-weeks post-injection (PI). Results: The majority of SNpc neurons co-expressed ΔLRRK2 and human α-syn A53T after transduction. ΔLRRK2 G2019S alone produced no cell loss at 15-weeks PI. Injection of AAV-α-syn A53T alone or mixed with a control AAV coding for GFP produced a significant loss of DA neurons. Co-injection of AAV-α-syn A53T with AAV-ΔLRRK2 G2019S instead of GFP slightly exacerbated that neuronal loss We also studied the inactive form, ΔLRRK2 G2019S/D1994A at 6 weeks PI. Injection of AAV-ΔLRRK2 G2019S mixed with AAV-α-syn A53T produced a neurotoxic effect that was stronger than that produced by the co-injection of AAV-DLRRK2 G2019S/D1994A and AAV-α-syn A53T . Conclusion: Thus, these results show that mutant LRRK2 may selectively facilitate α-syn toxicity in DA neurons through a cell-autonomous mechanism involving its kinase domain. However, considering that the effect of ΔLRRK2 G2019S upon human α-syn A53T is moderate in our paradigm where pathological proteins are overexpressed, the study supports the hypothesis that the interplay between LRRK2 and α-syn may also implicate non-cell-autonomous mechanisms such as those involved in neuroinflammation and spreading of α-syn aggregated species.

2020 ◽  
Author(s):  
Noémie Cresto ◽  
Camille Gardier ◽  
Marie-Claude Gaillard ◽  
Francesco Gubinelli ◽  
Pauline Roost ◽  
...  

Abstract Background: Alpha-synuclein (α-syn) and leucine-rich repeat kinase 2 (LRRK2) likely play crucial roles both in sporadic and familial forms of Parkinson’s disease (PD). The most prevalent mutation in LRRK2 is the G2019S substitution, which induces neurotoxicity through increased kinase activity. There is likely an interplay between LRRK2 and α-syn involved in the neurodegeneration of dopaminergic (DA) neurons in the substantia nigra (SNc) in PD. However, the mechanisms underlying this interplay are ill-defined. Here, we investigated whether LRRK2G2019S can increase the neurotoxicity induced by a mutant form of α-syn (A53T mutation) in DA neuronsin vivo.Methods: We used a co-transduction approach with AAV2/6 vectors encoding human a-synA53T and the C-terminal portion of LRRK2 (ΔLRRK2), which contains the kinase domain, with either the G2019S mutation (ΔLRRK2G2019) alone or the D1994A mutation (ΔLRRK2G2019S/D1994A), which inactivates the kinase activity of LRRK2. The AAVs were co-injected into the rat SNc and histological evaluation was performed at 6- and 15-weeks post-injection (PI). Results: Most SNc neurons co-expressed ΔLRRK2 and human α-synA53T after transduction. ΔLRRK2G2019S alone produced no cell loss at 15-weeks PI, whereas as expected, transduction with AAV-a-synA53T mixed with a control AAV coding for GFP produced significant loss of DA neurons. Co-injection of AAV-ΔLRRK2G2019S and AAV-α-synA53T induced a loss of DA neurons slightly but significantly greater than that produced by co-injection of AAV-α-synA53T and AAV-GFP. We also studied the inactive form, ΔLRRK2G2019S/D1994A at 6 weeks PI. Results showed that ΔLRRK2G2019S/D1994A did not alter the early toxicity of α-synA53T, in contrast to the active form ΔLRRK2G2019S that produced a moderate but significant increase in α-synA53T toxicity.Conclusion. Thus, these results show that mutant LRRK2 may selectively facilitate α-syn toxicity in DA neurons through a cell-autonomous mechanism involving its kinase activity. However, considering that the effect of ΔLRRK2G2019S upon human α-synA53T is moderate in our paradigm where pathological proteins are overexpressed, the study supports the hypothesis that the interplay between LRRK2 and α-syn also implicates non-cell-autonomous mechanisms such as those involved in neuroinflammation.


2020 ◽  
Author(s):  
Rachel Underwood ◽  
Mary Gannon ◽  
Aneesh Pathak ◽  
Navya Kapa ◽  
Sidhanth Chandra ◽  
...  

AbstractAlpha-synuclein (αsyn) is the key component of proteinaceous aggregates termed Lewy Bodies (LBs) that pathologically define a group of disorders known as synucleinopathies, including Parkinson’s Disease (PD) and Dementia with Lewy Bodies (DLB). αSyn is hypothesized to misfold and spread throughout the brain in a prion-like fashion. Transmission of αsyn necessitates the release of misfolded αsyn from one cell and the uptake of that αsyn by another, in which it can template the misfolding of endogenous αsyn upon cell internalization. 14-3-3 proteins are a family of highly expressed brain proteins that are neuroprotective in multiple PD models. We have previously shown that 14-3-3θ acts as a chaperone to reduce αsyn aggregation, cell-to-cell transmission, and neurotoxicity in the in vitro pre-formed fibril (PFF) model. In this study, we expanded our studies to test the impact of 14-3-3s on αsyn toxicity in the in vivo αsyn PFF model. We used both transgenic expression models and adenovirus associated virus (AAV)-mediated expression to examine whether 14-3-3 manipulation impacts behavioral deficits, αsyn aggregation, and neuronal loss in the PFF model. 14-3-3θ transgene overexpression in cortical and amygdala regions rescued social dominance deficits induced by PFFs at 6 months post injection, whereas 14-3-3 inhibition by transgene expression of the competitive 14-3-3 peptide inhibitor difopein in the cortex and amygdala accelerated social dominance deficits. The behavioral rescue by 14-3-3θ overexpression was associated with delayed αsyn aggregation induced by PFFs in these brain regions. Conversely, 14-3-3 inhibition by difopein in the cortex and amygdala accelerated αsyn aggregation and cortical pyramidal neuron loss induced by PFFs. 14-3-3θ overexpression by AAV in the substantia nigra (SN) also delayed αsyn aggregation in the SN and partially rescued PFF-induced dopaminergic cell loss in the SN. 14-3-3 inhibition in the SN accelerated nigral αsyn aggregation and increased PFF-induced dopaminergic cell loss. These data indicate a neuroprotective role for 14-3-3θ against αsyn toxicity in vivo.


2019 ◽  
Author(s):  
Francesca Pischedda ◽  
Maria Daniela Cirnaru ◽  
Luisa Ponzoni ◽  
Michele Sandre ◽  
Alice Biosa ◽  
...  

SummaryParkinson’s disease (PD) is characterized by the progressive degeneration of dopaminergic neurons within the substantia nigra pars compacta and the presence of protein aggregates in surviving neurons. LRRK2 G2019S mutation is one of the major determinants of familial PD cases and leads to late-onset PD with pleomorphic pathology, including alpha-synuclein accumulation and deposition of protein inclusions. We demonstrated that LRRK2 phosphorylates N-ethylmaleimide sensitive factor (NSF). We observed aggregates containing NSF in basal ganglia specimens from G2019S carrier PD patients and in cellular and animal models expressing the LRRK2 G2019S variant. We found that LRRK2 G2019S kinase activity induces the accumulation of NSF in toxic aggregates. Noteworthy, the induction of autophagy cleared NSF aggregation and rescued motor and cognitive impairment observed in aged hG2019S BAC mice. We suggest that LRRK2 G2019S pathological phosphorylation hampers substrate catabolism, thus causing the formation of cytotoxic protein inclusions.HighlightsLRRK2 phosphorylates NSF in vivoNSF aggregates in complementary LRRK2 G2019S modelsLRRK2 G2019S kinase activity induces NSF accumulation in toxic aggregatesAutophagy induction rescues hG2019S BAC mice motor and cognitive impairment


2021 ◽  
Vol 22 (13) ◽  
pp. 6760
Author(s):  
Noémie Cresto ◽  
Camille Gardier ◽  
Marie-Claude Gaillard ◽  
Francesco Gubinelli ◽  
Pauline Roost ◽  
...  

Alpha-synuclein (α-syn) and leucine-rich repeat kinase 2 (LRRK2) play crucial roles in Parkinson’s disease (PD). They may functionally interact to induce the degeneration of dopaminergic (DA) neurons via mechanisms that are not yet fully understood. We previously showed that the C-terminal portion of LRRK2 (ΔLRRK2) with the G2019S mutation (ΔLRRK2G2019S) was sufficient to induce neurodegeneration of DA neurons in vivo, suggesting that mutated LRRK2 induces neurotoxicity through mechanisms that are (i) independent of the N-terminal domains and (ii) “cell-autonomous”. Here, we explored whether ΔLRRK2G2019S could modify α-syn toxicity through these two mechanisms. We used a co-transduction approach in rats with AAV vectors encoding ΔLRRK2G2019S or its “dead” kinase form, ΔLRRK2DK, and human α-syn with the A53T mutation (AAV-α-synA53T). Behavioral and histological evaluations were performed at 6- and 15-weeks post-injection. Results showed that neither form of ΔLRRK2 alone induced the degeneration of neurons at these post-injection time points. By contrast, injection of AAV-α-synA53T alone resulted in motor signs and degeneration of DA neurons. Co-injection of AAV-α-synA53T with AAV-ΔLRRK2G2019S induced DA neuron degeneration that was significantly higher than that induced by AAV-α-synA53T alone or with AAV-ΔLRRK2DK. Thus, mutated α-syn neurotoxicity can be enhanced by the C-terminal domain of LRRK2G2019 alone, through cell-autonomous mechanisms.


2013 ◽  
Vol 41 (4) ◽  
pp. 1055-1060 ◽  
Author(s):  
Jason S. Kerr ◽  
Catherine H. Wilson

Pseudokinases are a class of kinases which are structurally designated as lacking kinase activity. Despite the lack of kinase domain sequence conservation, there is increasing evidence that a number of pseudokinases retain kinase activity and/or have critical cellular functions, casting aside previous notions that pseudokinases simply exist as redundant kinases. Moreover, a number of recent studies have implicated pseudokinases as critical components in cancer formation and progression. The present review discusses the interactions and potential functions that nuclear receptor-binding protein 1, a pseudokinase recently described to have a tumour-suppressive role in cancer, may play in cellular homoeostasis and protein regulation. The recent findings highlighted in the present review emphasize the requirement to fully determine the function of pseudokinases in vitro and in vivo, the understanding of which may ultimately uncover new directions for drug discovery.


2001 ◽  
Vol 21 (3) ◽  
pp. 755-764 ◽  
Author(s):  
Tatsushi Wakayama ◽  
Tae Kondo ◽  
Seiko Ando ◽  
Kunihiro Matsumoto ◽  
Katsunori Sugimoto

ABSTRACT In eukaryotes, the ATM and ATR family proteins play a critical role in the DNA damage and replication checkpoint controls. These proteins are characterized by a kinase domain related to the phosphatidylinositol 3-kinase, but they have the ability to phosphorylate proteins. In budding yeast, the ATR family protein Mec1/Esr1 is essential for checkpoint responses and cell growth. We have isolated the PIE1 gene in a two-hybrid screen for proteins that interact with Mec1, and we show that Pie1 interacts physically with Mec1 in vivo. Like MEC1, PIE1is essential for cell growth, and deletion of the PIE1 gene causes defects in the DNA damage and replication block checkpoints similar to those observed in mec1Δ mutants. Rad53 hyperphosphorylation following DNA damage and replication block is also decreased in pie1Δ cells, as in mec1Δcells. Pie1 has a limited homology to fission yeast Rad26, which forms a complex with the ATR family protein Rad3. Mutation of the region in Pie1 homologous to Rad26 results in a phenotype similar to that of thepie1Δ mutation. Mec1 protein kinase activity appears to be essential for checkpoint responses and cell growth. However, Mec1 kinase activity is unaffected by the pie1Δ mutation, suggesting that Pie1 regulates some essential function other than Mec1 kinase activity. Thus, Pie1 is structurally and functionally related to Rad26 and interacts with Mec1 to control checkpoints and cell proliferation.


1996 ◽  
Vol 16 (10) ◽  
pp. 5409-5418 ◽  
Author(s):  
H Mischak ◽  
T Seitz ◽  
P Janosch ◽  
M Eulitz ◽  
H Steen ◽  
...  

The elevation of cyclic AMP (cAMP) levels in the cell downregulates the activity of the Raf-1 kinase. It has been suggested that this effect is due to the activation of cAMP-dependent protein kinase (PKA), which can directly phosphorylate Raf-1 in vitro. In this study, we confirmed this hypothesis by coexpressing Raf-1 with the constitutively active catalytic subunit of PKA, which could fully reproduce the inhibition previously achieved by cAMP. PKA-phosphorylated Raf-1 exhibits a reduced affinity for GTP-loaded Ras as well as impaired catalytic activity. As the binding to GTP-loaded Ras induces Raf-1 activation in the cell, we examined which mechanism is required for PKA-mediated Raf-1 inhibition in vivo. A Raf-1 point mutant (RafR89L), which is unable to bind Ras, as well as the isolated Raf-1 kinase domain were still fully susceptible to inhibition by PKA, demonstrating that the phosphorylation of the Raf-1 kinase suffices for inhibition. By the use of mass spectroscopy and point mutants, PKA phosphorylation site was mapped to a single site in the Raf-1 kinase domain, serine 621. Replacement of serine 621 by alanine or cysteine or destruction of the PKA consensus motif by changing arginine 618 resulted in the loss of catalytic activity. Notably, a mutation of serine 619 to alanine did not significantly affect kinase activity or regulation by activators or PKA. Changing serine 621 to aspartic acid yielded a Raf-1 protein which, when expressed to high levels in Sf-9 insect cells, retained a very low inducible kinase activity that was resistant to PKA downregulation. The purified Raf-1 kinase domain displayed slow autophosphorylation of serine 621, which correlated with a decrease in catalytic function. The Raf-1 kinase domain activated by tyrosine phosphorylation could be downregulated by PKA. Specific removal of the phosphate residue at serine 621 reactivated the catalytic activity. These results are most consistent with a dual role of serine 621. On the one hand, serine 621 appears essential for catalytic activity; on the other hand, it serves as a phosphorylation site which confers negative regulation.


2017 ◽  
Vol 114 (5) ◽  
pp. E879-E886 ◽  
Author(s):  
Maria Castañeda-Bueno ◽  
Juan Pablo Arroyo ◽  
Junhui Zhang ◽  
Jeremy Puthumana ◽  
Orlando Yarborough ◽  
...  

With-no-lysine kinase 4 (WNK4) regulates electrolyte homeostasis and blood pressure. WNK4 phosphorylates the kinases SPAK (Ste20-related proline alanine-rich kinase) and OSR1 (oxidative stress responsive kinase), which then phosphorylate and activate the renal Na-Cl cotransporter (NCC). WNK4 levels are regulated by binding to Kelch-like 3, targeting WNK4 for ubiquitylation and degradation. Phosphorylation of Kelch-like 3 by PKC or PKA downstream of AngII or vasopressin signaling, respectively, abrogates binding. We tested whether these pathways also affect WNK4 phosphorylation and activity. By tandem mass spectrometry and use of phosphosite-specific antibodies, we identified five WNK4 sites (S47, S64, S1169, S1180, S1196) that are phosphorylated downstream of AngII signaling in cultured cells and in vitro by PKC and PKA. Phosphorylation at S64 and S1196 promoted phosphorylation of the WNK4 kinase T-loop at S332, which is required for kinase activation, and increased phosphorylation of SPAK. Volume depletion induced phosphorylation of these sites in vivo, predominantly in the distal convoluted tubule. Thus, AngII, in addition to increasing WNK4 levels, also modulates WNK4 kinase activity via phosphorylation of sites outside the kinase domain.


2004 ◽  
Vol 382 (1) ◽  
pp. 199-204 ◽  
Author(s):  
Wannian YANG ◽  
Jaclyn M. JANSEN ◽  
Qiong LIN ◽  
Sabrina CANOVA ◽  
Richard A. CERIONE ◽  
...  

ACK2 (activated Cdc42-associated tyrosine kinase 2) is a specific downstream effector for Cdc42, a member of the Rho family of small G-proteins. ACK2 interacts with clathrin, an endocytic vesicle coating protein, and SH3PX1, a sorting nexin, and is involved in clathrin-mediated endocytosis. While searching for proteins that interact with ACK2, we found that HSP90 (heat-shock protein 90) binds to ACK2. Analysis of a series of truncation mutants of ACK2 has defined the regions within the kinase domain of ACK2 that are required for binding to HSP90. The binding of HSP90 to ACK2 is blocked upon treatment with geldanamycin, an HSP90-specific ATPase inhibitor, and is required for the in vivo kinase activity of ACK2 and its association with Cdc42. Overall, our data suggest a novel mechanism of regulation in which HSP90 serves as a regulatory component in an ACK2 functional complex and plays a role in sustaining its kinase activity.


Author(s):  
Xi Zhang ◽  
Hui Xu ◽  
Xiaoyang Bi ◽  
Guoqing Hou ◽  
Andong Liu ◽  
...  

Background and Purpose: Identification of accurate targets is essential for a successful development of targeted therapy in cancer. Studies have shown that matrine has antitumor activity against many types of cancers. However, the direct target in cancer cells of its anticancer effect has not been identified. The purpose of this study was to find the molecular target of matrine to inhibit the proliferation of cancer cells and explore its mechanism of action. Experimental Approach: The effect of matrine on the proliferation of cancer cells were examined by MTT assay. Pull-down assay and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) were performed to explore the target of matrine. A series of in vitro and in vivo experiments were conducted to reveal the mechanisms by which matrine targeted Src to regulate the downstream signaling pathways of Src in cancer cells. Key Results: Herein we showed that matrine inhibited the proliferation of cancer in vitro and in vivo. Pull-down assay with matrine-amino coupling resins (MA beads) and LC-MS/MS identified Src as the target of matrine. Src kinase domain is required for its interaction with matrine and Ala392 in the kinase domain participated in matrine-Src interaction. Intriguingly, matrine was proven to inhibit Src kinase activity in a non-ATP-competitive manner by blocking the autophosphorylation of Tyr419. Matrine down-regulated the phosphorylation levels of MAPK/ERK, JAK2/STAT3 and PI3K/Akt signaling pathways. Conclusions and Implications: Collectively, matrine targeted Src, inhibited kinase activity and down-regulated its downstream MAPK/ERK, JAK2/STAT3 and PI3K/Akt phosphorylation signaling pathways to inhibit the proliferation of cancer cells.


Sign in / Sign up

Export Citation Format

Share Document