scholarly journals Expression and Potential Role of MMP-9 in Intrauterine Adhesion

2020 ◽  
Author(s):  
Congqing Li ◽  
Lin Cong ◽  
Youjiang Xu ◽  
Wenyan Wang

Abstract Background: Intrauterine adhesions will affect the amount of menstrual and fertility, endometrial fibrosis is the last manifestation of the IUA. MMP-9 is closely related to fibrosis. The purpose of the study was to assess the role of MMP-9 in intrauterine adhesion (IUA) rats and patients.Methods:40 female rats and 24 patients were enrolled in this study. We used immunohistochemistry to detect the MMP-9 expression in rats and human endometrial tissues, as well as detected their protein levels with western blot. In addition, we detected their mRNA expression levels with qRT-PCR.Results: The expression of MMP-9 in the IUA rats was reduced compared with the Sham group and Ctrl group (P< 0.05), and the expression of MMP-9 was also reduced in the IUA patients compared with the Ctrl group (P< 0.05). The mRNA levels of MMP-9 in endometrium were presenting similar results (P< 0.05). Conclusions: Our study suggests that MMP-9 may play an important role in fibrosis of the IUA. It may provide a new reference for the treatment of IUA in the future.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Congqing Li ◽  
Wenyan Wang ◽  
Shiying Sun ◽  
Youjiang Xu ◽  
Ziang Fang ◽  
...  

Objective. Intrauterine adhesions affect menstruation and fertility, and endometrial fibrosis is the final manifestation of IUA. MMP-9 is closely related to fibrosis. The purpose of the study was to assess the role of MMP-9 in intrauterine adhesion (IUA) in rats and patients. Methods. 40 rats and 24 women were enrolled in this study. 40 rats were randomly divided into 3 groups: IUA group ( n = 20 ), sham group ( n = 10 ), and control group ( n = 10 ). Rat IUA models were established by intrauterine mechanical and chemical injured. In this study, 12 patients of intrauterine adhesions were detected and underwent TCRA (transcervical resection of adhesion) surgery, and endometrial tissue specimens were obtained during operation. One month later, an office hysteroscopy procedure was performed, and endometrial tissue specimens were obtained during operation again (postoperative group). A group of 12 normal age-matched control individuals served as controls underwent hysteroscopy and endometrial sampling. We used immunohistochemistry to detect MMP-9 expressions in rats and human endometrial tissues and to detect MMP-9 protein levels by Western blotting. In addition, we detected mRNA expression levels with qRT-PCR. Results. The expression of MMP-9 in the IUA rats was reduced compared with that in the sham group and Ctrl group ( P < 0.05 ), and the expression of MMP-9 was also reduced in the IUA patients compared with that in the Ctrl group ( P < 0.05 ). The mRNA levels of MMP-9 in the endometrium reflected similar results ( P < 0.05 ). The MMP-9 clearly increased even in the endometrium after TCRA surgery ( P < 0.05 ). Conclusion. Our study suggests that MMP-9 may play an important role in IUA. In the future, more in-depth research should be conducted on MMP-9.


2021 ◽  
Vol 22 (3) ◽  
pp. 1478
Author(s):  
Jiayin Lu ◽  
Yaoxing Chen ◽  
Zixu Wang ◽  
Jing Cao ◽  
Yulan Dong

Restraint stress causes various maternal diseases during pregnancy. β2-Adrenergic receptor (β2-AR) and Forkhead transcription factor class O 1 (FOXO1) are critical factors not only in stress, but also in reproduction. However, the role of FOXO1 in restraint stress, causing changes in the β2-AR pathway in pregnant mice, has been unclear. The aim of this research was to investigate the β2-AR pathway of restraint stress and its impact on the oxidative stress of the maternal uterus. In the study, maternal mice were treated with restraint stress by being restrained in a transparent and ventilated device before sacrifice on Pregnancy Day 5 (P5), Pregnancy Day 10 (P10), Pregnancy Day 15 (P15), and Pregnancy Day 20 (P20) as well as on Non-Pregnancy Day 5 (NP5). Restraint stress augmented blood corticosterone (CORT), norepinephrine (NE), and blood glucose levels, while oestradiol (E2) levels decreased. Moreover, restraint stress increased the mRNA levels of the FOXO family, β2-AR, and even the protein levels of FOXO1 and β2-AR in the uterus and ovaries. Furthermore, restraint stress increased uterine oxidative stress level. In vitro, the protein levels of FOXO1 were also obviously increased when β2-AR was activated in endometrial stromal cells (ESCs). In addition, phosphorylated-nuclear factor kappa-B p65 (p-NF-κB p65) and its target genes decreased significantly when FOXO1 was inhibited. Overall, it can be said that the β2-AR/FOXO1/p-NF-κB p65 pathway was activated when pregnant mice were under restraint stress. This study provides a scientific basis for the origin of psychological stress in pregnant women.


1986 ◽  
Vol 6 (11) ◽  
pp. 4026-4030
Author(s):  
C L Denis ◽  
C Gallo

The regulation of mRNA production for the yeast positive activator ADR1, a gene required for the expression of the glucose-repressible alcohol dehydrogenase (ADH II), was studied. ADR1 mRNA levels did not vary when yeasts were switched from glucose- to ethanol-containing medium, while ADH II expression increased 100-fold. The mRNA for the ADR1-5c allele, which augments ADH II expression 60-fold during glucose repression, was not present in greater abundance than ADR1 mRNA. Additionally, the ccr1-1 allele, which blocks ADH2 mRNA formation and partially suppresses the ADR1-5c phenotype, did not alter the levels of ADR1 mRNA. These results indicate that ADR1 is not transcriptionally controlled. To determine the character of the ADR1-5c mutation, the region containing the mutation was identified and sequenced. At base pair +683 a G-to-A transition was detected in the ADR1 coding sequence which would result in the substitution of a lysine residue for an arginine at amino acid 228. The location of the ADR1-5c mutation in the interior of the ADR1 coding sequences suggests that it enhances the activity of an extant but inactive ADR1 protein rather than increases the abundance of ADR1 by altered translation of its mRNA. The ADR1-5c mutation occurs in a region of the polypeptide corresponding to a cyclic AMP-dependent protein kinase phosphorylation recognition sequence. The potential role of reversible phosphorylation in the posttranslational regulation of ADR1 is discussed.


2021 ◽  
Author(s):  
Yann Breton ◽  
Corinne Barat ◽  
Michel J. Tremblay

Several host factors influence HIV-1 infection and replication. The p53-mediated antiviral role in monocytes-derived macrophages (MDMs) was previously highlighted. Indeed, an increase in p53 level results in a stronger restriction against HIV-1 early replication steps through SAMHD1 activity. In this study, we investigated the potential role of some p53 isoforms in HIV-1 infection. Transfection of isoform-specific siRNA induces distinctive effects on the virus life cycle. For example, in contrast to a siRNA targeting all isoforms, a knockdown of Δ133p53 transcripts reduces virus replication in MDMs that is correlated with a decrease in phosphorylated inactive SAMHD1. Combination of Δ133p53 knockdown and Nutlin-3, a pharmacological inhibitor of MDM2 that stabilizes p53, further reduces susceptibility of MDMs to HIV-1 infection, thus suggesting an inhibitory role of Δ133p53 towards p53 antiviral activity. In contrast, p53β knockdown in MDMs increases the viral production independently of SAMHD1. Moreover, experiments with a Nef-deficient virus show that this viral protein plays a protective role against the antiviral environment mediated by p53. Finally, HIV-1 infection affects the expression pattern of p53 isoforms by increasing p53β and p53γ mRNA levels while stabilizing the protein level of p53α and some isoforms from the p53β subclass. The balance between the various p53 isoforms is therefore an important factor in the overall susceptibility of macrophages to HIV-1 infection, fine-tuning the p53 response against HIV-1. This study brings a new understanding of the complex role of p53 in virus replication processes in myeloid cells. Importance As of today, HIV-1 is still considered as a global pandemic without a functional cure, partly because of the presence of stable viral reservoirs. Macrophages constitute one of these cell reservoirs, contributing to the viral persistence. Studies investigating the host factors involved in cell susceptibility to HIV-1 infection might lead to a better understanding of the reservoir formation and will eventually allow the development of an efficient cure. Our team previously showed the antiviral role of p53 in macrophages, which acts by compromising the early steps of HIV-1 replication. In this study, we demonstrate the involvement of p53 isoforms, which regulates p53 activity and define the cellular environment influencing viral replication. In addition, the results concerning the potential role of p53 in antiviral innate immunity could be transposed to other fields of virology and suggest that knowledge in oncology can be applied to HIV-1 research.


1986 ◽  
Vol 6 (11) ◽  
pp. 4026-4030 ◽  
Author(s):  
C L Denis ◽  
C Gallo

The regulation of mRNA production for the yeast positive activator ADR1, a gene required for the expression of the glucose-repressible alcohol dehydrogenase (ADH II), was studied. ADR1 mRNA levels did not vary when yeasts were switched from glucose- to ethanol-containing medium, while ADH II expression increased 100-fold. The mRNA for the ADR1-5c allele, which augments ADH II expression 60-fold during glucose repression, was not present in greater abundance than ADR1 mRNA. Additionally, the ccr1-1 allele, which blocks ADH2 mRNA formation and partially suppresses the ADR1-5c phenotype, did not alter the levels of ADR1 mRNA. These results indicate that ADR1 is not transcriptionally controlled. To determine the character of the ADR1-5c mutation, the region containing the mutation was identified and sequenced. At base pair +683 a G-to-A transition was detected in the ADR1 coding sequence which would result in the substitution of a lysine residue for an arginine at amino acid 228. The location of the ADR1-5c mutation in the interior of the ADR1 coding sequences suggests that it enhances the activity of an extant but inactive ADR1 protein rather than increases the abundance of ADR1 by altered translation of its mRNA. The ADR1-5c mutation occurs in a region of the polypeptide corresponding to a cyclic AMP-dependent protein kinase phosphorylation recognition sequence. The potential role of reversible phosphorylation in the posttranslational regulation of ADR1 is discussed.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Akira Nishiyama ◽  
Juan Wang ◽  
Shinichi Yachida ◽  
Genevieve Nguyen ◽  
Takuo Hirose ◽  
...  

(Pro)renin receptor ((P)RR) is a component of the Wnt receptor complex (Science, 2010). We have recently demonstrated that (P)RR plays an important role in the tumorigenesis of pancreatic ductal adenocarcinoma via the activation of Wnt/β-catenin signaling pathway (Shibayama et al. Sci Rep. 2015). Since the patients with colon cancer often show aberrantly activated Wnt/β-catenin-dependent signaling pathway by the mutations of its components, we investigated the possible role of (P)RR and Wnt/β-catenin signaling pathway in carcinogenesis of colon cancer. Real-time PCR was used for measuring mRNA levels of (P)RR. Protein levels of (P)RR was determined by Western blotting and immunohistochemistry. Activated β-catenin levels were determined by Western blotting. Cell proliferative ability was evaluated by counting the cell number in cultured colon cancer cell lines, HCT116 and DLD-1 cells. As compared to normal colon tissues (n=6), mRNA and protein levels of (P)RR were increased by 2.6- and 2.2-fold, respectively, in colon cancer tissues (n=9), which were associated with increased activated β-catenin levels (by 2.8-fold, P<0.05). However, plasma soluble (P)RR levels were not changed in patients with colon cancer (n=9). (P)RR and activated β-catenin levels were also increased in HCT116 (by 2.2- and 2.7-fold, n=5, respectively) and DLD-1 cells (by 1.9- and 2.8-fold, n=5, respectively). In these cells, inhibiting (P)RR with an siRNA attenuated the activity of β-catenin and reduced the proliferative abilities (n=5, P<0.05, respectively). These data suggest that (P)RR contributes to the tumorigenesis of colon cancer through the activation of Wnt/β-catenin signaling pathway.


Marine Drugs ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 77
Author(s):  
Ji Min Kim ◽  
Jeong Hun Kim ◽  
Sung-Chan Shin ◽  
Gi Cheol Park ◽  
Hyung Sik Kim ◽  
...  

Here, we investigated the effects of sex hormones on extracellular matrix (ECM)-related gene expression in the vocal fold lamina propria of ovariectomized (after ovary removal) rats and verified whether echinochrome A (ECH) exerts any therapeutic effects on ECM reconstitution after estrogen deficiency in ovariectomized rats. Sprague–Dawley female rats (9 weeks old) were acclimatized for a week and randomly divided into three groups (n = 15 each group) as follows: group I (sham-operated rats, SHAM), group II (ovariectomized rats, OVX), group III (ovariectomized rats treated with ECH, OVX + ECH). Rats from the OVX + ECH group were intraperitoneally injected with ECH at 10 mg/kg thrice a week after surgery for 6 weeks. And rats were sacrificed 6 weeks after ovariectomy. Estradiol levels decreased in OVX group compared with the SHAM group. ECH treatment had no effect on the levels of estradiol and expression of estrogen receptor β (ERβ). The evaluation of ECM components showed no significant changes in elastin and hyaluronic acid levels between the different groups. Collagen I and III levels were lower in OVX group than in SHAM group but increased in OVX + ECH group. The mRNA levels of matrix metalloproteinase (MMP)-1, -2, -8, and -9 were significantly higher in the OVX group than in the SHAM group, but decreased in the OVX + ECH group. Thus, changes were observed in ECM-related genes in the OVX group upon estradiol deficiency that were ameliorated by ECH administration. Thus, the vocal fold is an estradiol-sensitive target organ and ECH may have protective effects on the ECM of vocal folds in ovariectomized rats.


Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 567
Author(s):  
Wenyu Si ◽  
Hailing Li ◽  
Tiezhu Kang ◽  
Jing Ye ◽  
Zhiqiu Yao ◽  
...  

This study explored the role of γ-aminobutyric acid transaminase (GABA-T) in the puberty and reproductive performance of female rats. Immunofluorescence technique, quantitative real-time PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect the distribution of GABA-T and the expression of genes and hormones in female rats, respectively. The results showed that GABA-T was mainly distributed in the arcuate nucleus (ARC), paraventricular nucleus (PVN) and periventricular nucleus (PeN) of the hypothalamus, and in the adenohypophysis, ovarian granulosa cells and oocytes. Abat mRNA level at 28 d was lowest in the hypothalamus and the pituitary; at puberty, it was lowest in the ovary. Abat mRNA level was highest in adults in the hypothalamus; at infancy and puberty, it was highest in the pituitary; and at 21 d it was highest in the ovary. After vigabatrin (GABA-T irreversible inhibitor) was added to hypothalamus cells, the levels of Abat mRNA and Rfrp-3 mRNA were significantly reduced, but Gnrh mRNA increased at the dose of 25 and 50 μg/mL; Kiss1 mRNA was significantly increased but Gabbr1 mRNA was reduced at the 50 μg/mL dose. In prepubertal rats injected with vigabatrin, puberty onset was delayed. Abat mRNA, Kiss1 mRNA and Gnrh mRNA levels were significantly reduced, but Rfrp-3 mRNA level increased in the hypothalamus. Vigabatrin reduced the concentrations of GABA-T, luteinizing hormone (LH) and progesterone (P4), and the ovarian index. Lactation performance was reduced in adult rats with vigabatrin treatment. Four hours after vigabatrin injection, the concentrations of GABA-T and LH were significantly reduced in adult and 25 d rats, but follicle-stimulating hormone (FSH) increased in 25 d rats. In conclusion, GABA-T affects the reproductive function of female rats by regulating the levels of Gnrh, Kiss1 and Rfrp-3 in the hypothalamus as well as the concentrations of LH and P4.


Sarcoma ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
J. W. Martin ◽  
M. Zielenska ◽  
G. S. Stein ◽  
A. J. van Wijnen ◽  
J. A. Squire

Osteosarcoma is an aggressive but ill-understood cancer of bone that predominantly affects adolescents. Its rarity and biological heterogeneity have limited studies of its molecular basis. In recent years, an important role has emerged for the RUNX2 “platform protein” in osteosarcoma oncogenesis. RUNX proteins are DNA-binding transcription factors that regulate the expression of multiple genes involved in cellular differentiation and cell-cycle progression. RUNX2 is genetically essential for developing bone and osteoblast maturation. Studies of osteosarcoma tumours have revealed that the RUNX2 DNA copy number together with RNA and protein levels are highly elevated in osteosarcoma tumors. The protein is also important for metastatic bone disease of prostate and breast cancers, while RUNX2 may have both tumor suppressive and oncogenic roles in bone morphogenesis. This paper provides a synopsis of the current understanding of the functions of RUNX2 and its potential role in osteosarcoma and suggests directions for future study.


1991 ◽  
Vol 10 (5) ◽  
pp. 511-523 ◽  
Author(s):  
S. Levin ◽  
D. Semler ◽  
S. Gad ◽  
E. Burton ◽  
G. Walsh ◽  
...  

The mechanism of bemitradine (SC-33643) cardiotoxicity in female rats was investigated in the set of preliminary experiments reported here. Specifically, the involvement of bemitradine metabolites and the potential role of adrenal epinephrine release were examined. Desethylbemi-tradine (the primary metabolite of bemitradine) was shown to be cardiotoxic at oral dosages greater than 300 mg/kg for 7 days. In a separate experiment, a major metabolite (bemitradine glycol) unique to the rat was not cardiotoxic at dosages up to 600 mg/kg for 7 days. Treatment of rats with SKF 525-A enhanced the lethality and the cardiotoxicity of bemitradine. In contrast, prior treatments of rats with phenobarbital resulted in decreased cardiotoxicity of both bemitradine and desethylbemitradine (a bemitradine metabolite presumably further metabolized by the microsomal mixed function oxidases). In other independent experiments, bemitradine-induced cardiotoxicity was shown to be accompanied by adrenal damage and decreases in adrenal epinephrine. Propranolol (a β-antagonist) treatment protected rats against cardiotoxicity. Bemitradine also had a direct effect on the heart, as evidenced in an experiment in which bemitradine caused dose-related increases in the T-wave of the rat ECG complex. These data suggest that (1) both bemitradine and desethylbemitradine may be responsible for the cardiotoxicity, and the other downstream metabolites are not and (2) cardiotoxicity may be due to the combination of direct effects of bemitradine on the rat heart and the bemitradine-mediated release of adrenal epinephrine (a known cardiotoxin at high circulating levels).


Sign in / Sign up

Export Citation Format

Share Document