scholarly journals Glioblastoma cell-derived extracellular vesicle miR-27a-3p facilitates M2 macrophage polarization

2020 ◽  
Author(s):  
Guifang Zhao ◽  
Hongquan Yu ◽  
Lijuan Ding ◽  
Weiyao Wang ◽  
Huang Wang ◽  
...  

Abstract Background: M2 macrophage polarization has been found to be correlated with malignancy of glioblastoma. In this study, we investigated the potential role of microRNA (miRNA) derived from extracellular vesicles of glioblastoma (glioblastoma-EVs) in M2 macrophage polarization.Methods: After isolation of human glioblastoma-EVs, transmission electron microscopy (TEM) and Nano-particle tracking analysis (NTA) were performed to identify the EVs. Besides, the proliferation, migration and invasion of glioma cells were analyzed by CCK8 and Transwell assays, respectively. The target genes of miR-27a-3p were predicted through bioinformatics analysis and verified by dual-luciferase reporter gene assay. ChIP assay was applied to detect the binding of enhancer of zeste homologue 1 (EZH1) to lysine-specific demethylase 3A (KDM3A) promoter region and the interaction between KDM3A and connective tissue growth factor (CTGF). Glioblastoma mouse models were established followed by the implement of hematoxylin-eosin (HE) and ELISA staining on pathological changes of mouse brain tissues.Results: Human glioblastoma-EVs were successfully isolated. The high expression of miR-27a-3p was found in glioblastoma tissues as well as glioblastoma-EVs, which could induce M2 polarization, thus promoting glioblastoma cell proliferation, migration and invasion. It was also shown that miR-27a-3p targeted EZH1 and promoted KDM3A expression to elevate the expression of CTGF. Glioblastoma-EVs delivered miR-27a-3p to promote the KDM3A-upregulated CTGF by downregulating EZH1, thereby promoting M2 macrophage polarization and development of glioblastoma in vivo.Conclusion: These findings highlight that EV miR-27a-3p may promote M2 macrophage polarization, which is associated with the progression of tumors.

2020 ◽  
Vol 40 (7) ◽  
Author(s):  
Shi-Qin Liu ◽  
Zhi-Yang Zhou ◽  
Xue Dong ◽  
Lei Guo ◽  
Ke-Jing Zhang

Abstract Objective: ER+ breast cancer is the most common type of breast cancer, which seriously affects the physical and mental health of women. Recently, lncRNAs mediated tumor-associated macrophages (TAM) were identified to involve in tumorigenesis. Therefore, the present study aimed at demonstrating the regulatory network of GNAS-AS1 in TAM-mediated ER+ breast cancer progress. Methods: The expression levels of genes were evaluated using qRT-PCR. The proportions of polarized macrophages (M1, M2) were assessed by flow cytometry. Cell proliferation, migration and invasion were evaluated by CCK-8, wound healing and transwell assay, respectively. Double-luciferase reporter system was used to detect the interaction between molecules. Western blot was applied to test protein levels. Results: The expression of GNAS-AS1 was obviously increased in ER+ breast cancer tissues and cell lines, as well as M2 macrophages. GNAS-AS1 facilitated the capabilities of proliferation, migration and invasion of ER+ breast cancer cells by accelerating M2 macrophage polarization via directly sponging miR-433-3p. GATA3, as a target of miR-433-3p, could positively regulate by GNAS-AS1. Furthermore, either miR-433-3p overexpression or GATA3 knockdown impaired the effects of GNAS-AS1 on M2 macrophage polarization and ER+ breast cancer cells progression. Conclusion: GNAS-AS1/miR-433-3p/GATA3 axis promoted proliferation, metastasis of ER+ breast cancer cells by accelerating M2 macrophage polarization. The mechanism may provide a new strategy and target for ER+ breast cancer treatment.


2021 ◽  
Vol 35 ◽  
pp. 205873842110167
Author(s):  
Zhensen Zhu ◽  
Bo Chen ◽  
Liang Peng ◽  
Songying Gao ◽  
Jingdong Guo ◽  
...  

Activated M2 macrophages are involved in hypertrophic scar (HS) formation via manipulating the differentiation of fibroblasts to myofibroblasts having the proliferative capacity and biological function. However, the function of exosomes derived from M2 macrophages in HS formation is unclear. Thus, this study aims to investigate the role of exosomes derived by M2 in the formation of HS. To understand the effect of exosomes derived from M2 macrophages on formation of HS, M2 macrophages were co-cultured with human dermal fibroblast (HDF) cells. Cell Counting Kit-8 assay was performed to evaluate HDF proliferation. To evaluate the migration and invasion of HDFs, wound-healing and transwell invasion assays were performed, respectively. To investigate the interaction between LINC01605 and miR-493-3p, a dual-luciferase reporter gene assay was adopted; consequently, an interaction between miR-493-3p and AKT1 was detected. Our results demonstrated that exosomes derived from M2 macrophages promoted the proliferation, migration, and invasion of HDFs. Additionally, we found that long noncoding RNA LINC01605, enriched in exosomes derived from M2 macrophages, promoted fibrosis of HDFs and that GW4869, an inhibitor of exosomes, could revert this effect. Mechanistically, LINC01605 promoted fibrosis of HDFs by directly inhibiting the secretion of miR-493-3p, and miR-493-3p down-regulated the expression of AKT1. Exosomes derived from M2 macrophages promote the proliferation and migration of HDFs by transmitting LINC01605, which may activate the AKT signaling pathway by sponging miR-493-3p. Our results provide a novel approach and basis for further investigation of the function of M2 macrophages in HS formation.


2021 ◽  

Abstract The full text of this preprint has been withdrawn by the authors due to author disagreement with the posting of the preprint. Therefore, the authors do not wish this work to be cited as a reference. Questions should be directed to the corresponding author.


BMC Urology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yujie Liu ◽  
Xing Hu ◽  
Liang Hu ◽  
Changjing Xu ◽  
Xuemei Liang

Abstract Background Clear cell renal cell carcinoma (ccRCC) is one of the best-characterized and most pervasive renal cancers. The present study aimed to explore the effects and potential mechanisms of let-7i-5p in ccRCC cells. Methods Using bioinformatics analyses, we investigated the expression of let-7i-5p in The Cancer Genome Atlas (TCGA) database and predicted biological functions and possible target genes of let-7i-5p in ccRCC cells. Cell proliferation assay, wound healing assay and transwell invasion assay were conducted to characterize the effects of let-7i-5p in ccRCC cells. To verify the interactions between let-7i-5p and HABP4, dual-luciferase reporter assay, quantitative real-time polymerase chain reaction, and western blotting were conducted. Rescue experiments were used to investigate the relationship between let-7i-5p and HABP4. Results TCGA data analysis revealed that ccRCC tissues had significantly increased let-7i-5p expression, which was robustly associated with poor overall survival. Further verification showed that ccRCC cell proliferation, migration and invasion were inhibited by let-7i-5p inhibitor but enhanced by let-7i-5p mimics. Subsequently, HABP4 was predicted to be the target gene of let-7i-5p. TCGA data showed that ccRCC tissues had decreased expression of HABP4 and that HABP4 expression was negatively correlated with let-7i-5p. Further verification showed that downregulation of HABP4 expression promoted cell proliferation, migration and invasion. The dual-luciferase reporter gene assay suggested that the let-7i-5p/HABP4 axis was responsible for the development of ccRCC. Conclusion Our results provide evidence that let-7i-5p functions as a tumor promoter in ccRCC and facilitates cell proliferation, migration and invasion by targeting HABP4. These results clarify the pathogenesis of ccRCC and offer a potential target for its treatment.


2021 ◽  
Vol 41 (3) ◽  
Author(s):  
Fuyuan Xie ◽  
Longgen Li ◽  
Yuting Luo ◽  
Rensheng Chen ◽  
Jinhong Mei

Abstract Objective: Long non-coding RNAs (lncRNAs) recently have been identified as influential indicators in a variety of malignancies. The aim of the present study was to identify a functional lncRNA LINC00488 and its effects on thyroid cancer in the view of cell proliferation and apoptosis. Methods: In order to evaluate the effects of LINC00488 on the cellular process of thyroid cancer, we performed a series of in vitro experiments, including cell counting kit-8 (CCK-8) assay, EdU (5-ethynyl-2′-deoxyuridine) assay, flow cytometry, transwell chamber assay, Western blot and RT-qPCR. The target gene of LINC00488 was then identified by bioinformatics analysis (DIANA and TargetScan). Finally, a series of rescue experiments was conducted to validate the effect of LINC00488 and its target genes on proliferation, migration, invasion and apoptosis of thyroid cancer. Results: Our findings revealed that LINC00488 was highly expressed in thyroid cancer cell lines (BCPAP, BHP5-16, TPC-1 and CGTH-W3) and promoted the proliferation, migration and invasion, while inhibited the apoptosis of thyroid cancer cells (BCPAP and TPC-1). The results of bioinformatics analysis and dual luciferase reporter gene assay showed that LINC00488 could directly bind to miR-376a-3p and down-regulated the expression level of miR-376a-3p. In addition, Paraoxonase-2 (PON2) was a target gene of miR-376a-3p and negatively regulated by miR-376a-3p. Rescue experiment indicated that LINC00488 might enhance PON2 expression by sponging miR-376a-3p in thyroid cancer. Conclusion: Taken together, our study revealed that lncRNA LINC00488 acted as an oncogenic gene in the progression of thyroid cancer via regulating miR-376a-3p/PON2 axis, which indicated that LINC00488-miR-376a-3p-PON2 axis could serve as novel biomarkers or potential targets for the treatment of thyroid cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Pingping Wang ◽  
Zhenzhi Ma ◽  
Zengyan Wang ◽  
Ximei Wang ◽  
Guifeng Zhao ◽  
...  

The role of microRNA (miRNA) in gestational diabetes mellitus has been widely investigated during the last decade. However, the altering effect of miR-6869-5p on immunity and placental microenvironment in gestational diabetes mellitus is largely unknown. In our study, the expression of miR-6869-5p was documented to be significantly decreased in placenta-derived mononuclear macrophages, which was also negatively related to PTPRO. Besides, PTPRO was negatively regulated by miR-6869-5p in placenta-derived mononuclear macrophages. In vitro, miR-6869-5p inhibited macrophage proliferation demonstrated by EdU and CCK-8 experiments. The inflammatory response in macrophages was also significantly inhibited by miR-6869-5p, which could regulate PTPRO as a target documented by luciferase reporter assay. Moreover, miR-6869-5p promoted M2 macrophage polarization and thus restrain inflammation. Accordingly, miR-6869-5p is involved in maintaining placental microenvironment balance by preventing from inflammation and inducing M2 macrophages in gestational diabetes mellitus.


Author(s):  
Yunhua Peng ◽  
Qingyuan Wang ◽  
Wei Yang ◽  
Qiqi Yang ◽  
Ynani Pei ◽  
...  

Herein, we unfolded miR-98-5p mechanism in inflammatory bowel disease (IBD). IBD mouse model was established. The severity of colitis was assessed daily using the disease activity index (DAI). Murine peritoneal macrophages were stimulated by lipopolysaccharide (LPS). MiR-98-5p, tribbles homolog 1 (Trib1), M1 and M2 macrophage marker genes mRNA expression was analyzed. The relationship between miR-98-5p and Trib1 was explored using a luciferase reporter assay. The strategy of loss-of-function was used to explore the mechanism of miR-98-5p in macrophage polarization, inflammation and IBD. The results revealed that IBD mice had higher DAI index and miR-98-5p expression when compared to the Sham group. MiR-98-5p and Trib1 displayed a targeted regulation relationship. Knockdown of miR-98-5p transformed LPS-induced M1 macrophage polarization into M2 macrophage polarization and inhibited inflammation via up-regulating Trib1. However, shTrib1 reversed the effects. In vivo experiment, silencing of miR-98-5p, diminished the DAI and promoted M2 macrophage polarization. In conclusion, knockdown of miR-98-5p changed macrophage polarization to the M2 phenotype by increasing Trib1 expression, thereby alleviating IBD symptoms.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yilong Ai ◽  
Shiwei Liu ◽  
Hailing Luo ◽  
Siyuan Wu ◽  
Haigang Wei ◽  
...  

lncRNAs are related to the progression of various diseases, including oral squamous cell carcinoma (OSCC), which is a common squamous cell carcinoma of the head and neck. Tumor-associated macrophages and tumor cells are significant components of tumor microenvironment. M2 polarization of tumor-associated macrophages is a crucial actor in tumor malignancy and metastasis. In this study, we studied the molecular mechanism of lncRNA DCST1-AS1 in OSCC. Here, we reported that DCST1-AS1 was significantly increased in OSCC cells. We found that loss of DCST1-AS1 obviously inhibited the proliferation, migration, and invasion of OSCC cells and xenograft tumor growth. Meanwhile, silencing of DCST1-AS1 also repressed the percentage of macrophages expressing M2 markers CD206 and CD11b. DCST1-AS1 shRNA enhanced the percentage of macrophages expressing M1 markers CD80 and CD11c. Then, we observed that loss of DCST1-AS1 suppressed OSCC progression via inactivating NF-κB signaling. As well established, NF-κB signaling exerts critical roles in tumor progression, and our study proved that DCST1-AS1 could regulate NF-κB signaling. We proved that blocking the NF-κB pathway using antagonists greatly downregulated OSCC progression and M2 macrophage polarization induced by the overexpression of DCST1-AS1. To sum up, we reported that DCST1-AS1 plays an important role in modulating OSCC tumorigenicity and M2 macrophage polarization through regulating the NF-κB pathway.


Author(s):  
Bin Qi ◽  
Cheng Yang ◽  
Zhanpeng Zhu ◽  
Hao Chen

Glioma is a primary intracranial tumor with high incidence and mortality. The oncogenic role of EZH2 has been reported in glioma. EZH2 inhibited microRNA-454-3p (miR-454-3p) by binding to its promoter in chondrosarcoma cells. Therefore, our study aimed to identify whether EZH2 regulated M2 macrophage polarization in glioma via miR-454-3p. Clinical samples of different grades of glioma and glioma cells were collected and immunohistochemistry and RT-qPCR demonstrated that EZH2 was highly expressed in glioma tissues. Expression of EZH2 was positively correlated with the degree of M2 macrophage polarization in glioma tissues. EZH2 was silenced by lentivirus in glioma cells, which were subsequently co-cultured with macrophages to evaluate its effect on macrophage polarization. miR-454-3p, a down-regulated miR in glioma, was found to be increased after silencing of EZH2. Furthermore, MethPrimer analysis showed that EZH2 silencing inhibited the DNA methylation level of miR-454-3p. Additionally, MS-PCR, dual-luciferase reporter, RIP and RNA pull down assays revealed that miR-454-3p promoted PTEN expression by inhibiting m6A modification through binding to the enzyme YTHDF2. Either inhibition of miR-454-3p or PTEN resulted in promotion of M2 macrophage polarization. Collectively, histone methyltransferase EZH2 inhibited miR-454-3p through methylation modification and promoted m6A modification of PTEN to induce glioma M2 macrophage polarization.


Author(s):  
Yang Hu ◽  
Ming Zhao ◽  
Li Li ◽  
Jie Ding ◽  
Yu-Min Gui ◽  
...  

Abstract Retinoblastoma (Rb) is the most common pediatric malignant tumor of the eyes. Previous studies demonstrated that miR-491-3p is downregulated in various cancers. However, its function in Rb remains unknown. A total of 15 pairs of primary Rb tissues and adjacent noncancerous tissues were collected. Quantitative real-time PCR (qRT-PCR) was used to investigate the expression profiles of miR-491-3p. qRT-PCR, western blotting and in situ immunocytochemistry were performed to investigate the expression profiles of epithelial–mesenchymal transition-related proteins (E-cadherin, Vimentin and N-cadherin) in Rb tissues and Rb cell lines as well as cell morphology. Cell proliferation was estimated by MTS and colony formation assays. Apoptosis was determined by FACS, cell migration and invasion were analyzed using transwell chambers. MiR-491-3p’s target genes were predicted using target gene prediction databases. The interplay between miR-491-3p and SNN was evaluated through dual luciferase reporter gene assay. MiR-491-3p was significantly downregulated in mixed collection of 15 pairs of Rb tissues and Rb cell lines. Overexpression of miR-491-3p enhanced apoptosis, and significantly suppressed proliferation, migration and invasion of Rb cells. In contrast, the present of miR-491-3p inhibitor showed reversed results which apoptosis decreased, while cell proliferation of ARPE-19 cells increased. In addition, miR-491-3p increased the expression of E-cadherin, and dramatically decreased the expression of Vimentin and N-cadherin in Rb tissues and Rb cell lines, noticeable changes in morphology, too, as cells became less cohesive and more adhering. We found out that SNN was the pairing target of miR-491-3p and result showed that miR-491-3p and SNN interacted with each other. We also found out that the effects of miR-491-3p were in Rb cells were almost entirely canceled out at the overexpression of SNN. Our findings collectively suggest that miR-491-3p is an important tumor suppressor in Rb, which inhibits tumor growth and metastasis in Rb. These implicate it may be explored as a new therapeutic target in Rb.


Sign in / Sign up

Export Citation Format

Share Document