scholarly journals Mitochondrial creatine kinase 1 in non-small cell lung cancer progression and hypoxia adaptation

Author(s):  
Ming Li ◽  
Huan Liu ◽  
Jinwen Li ◽  
Shuai Guo ◽  
Yan Lv ◽  
...  

Abstract Background Hypoxia is a prominent feature of solid cancer. This research aims to expose the role of mitochondrial creatine kinase 1 (CKMT1) in non-small cell lung cancer (NSCLC) progression and hypoxia adaptation. Methods The mRNA and protein expression of CKMT1 in NSCLC tissues and cells were detected using GEPIA web, immunohistochemistry, qRT-PCR and western blot. Cells were exposed to a hypoxic chamber with atmosphere containing 5% CO2, 1% O2 and residual N2. The protein levels of HIF-1α and CKMT1 in H1650 and H1299 cells exposed to hypoxia were determined by western blot. Luciferase activity assay and HIF1 specific inhibitor (LW6) assay indicated the related function of HIF-1 and CKMT1. The role of CKMT1 to NSCLC cells biological function on hypoxic condition was measured by CCK8, colony formation, transwell and apoptosis assay. Results CKMT1 was highly expressed in NSCLC tissues and cells using GEPIA web, immunohistochemistry, qRT-PCR and western blot. Hypoxia induced the accumulation of HIF-1α and the expression of CKMT1 in H1650 and H1299 cells. The results of luciferase activity assay and HIF1 specific inhibitor (LW6) assay indicated that HIF-1, as a transcription factor of CKMT1, up-regulated the expression of CKMT1 under hypoxic conditions. Further, knockdown of CKMT1 inhibited the cell proliferation and invasion of H1650 and H1299 cells, which could be rescued by hypoxia. Conclusions In summary, CKMT1 has the potential as a target for NSCLC hypoxic targeted therapy.

2021 ◽  
Vol 35 ◽  
pp. 205873842096608
Author(s):  
Ran Du ◽  
Feng Jiang ◽  
Yanhua Yin ◽  
Jinfen Xu ◽  
Xia Li ◽  
...  

Long non-coding RNA (lncRNA) X inactive specific transcript (XIST) is reported to play an oncogenic role in non-small cell lung cancer (NSCLC). However, the role of XIST in regulating the radiosensitivity of NSCLC cells remains unclear. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expressions of XIST and miR-16-5p in NSCLC in tissues and cells, and Western blot was used to assess the expression of WEE1 G2 checkpoint kinase (WEE1). Cell counting kit-8 (CCK-8), colony formation and flow cytometry assays were used to determine cell viability and apoptosis after NSCLC cells were exposed to different doses of X-rays. The interaction between XIST and miR-16-5p was confirmed by StarBase database, qRT-PCR and dual-luciferase reporter gene assays. TargetScan database was used to predict WEE1 as a target of miR-16-5p, and their targeting relationship was further validated by Western blot, qRT-PCR and dual-luciferase reporter gene assays. XIST was highly expressed in both NSCLC tissue and cell lines, and knockdown of XIST repressed NSCLC cell viability and cell survival, and facilitated apoptosis under the irradiation. MiR-16-5p was a target of XIST, and rescue experiments demonstrated that miR-16-5p inhibitors could reverse the role of XIST knockdown on radiosensitivity in NSCLC cells. WEE1 was validated as a target gene of miR-16-5p, and WEE1 could be negatively regulated by XIST. XIST promotes the radioresistance of NSCLC cells by regulating the expressions of miR-16-5p and WEE1, which can be a novel target for NSCLC therapy.


2020 ◽  
Vol 98 (2) ◽  
pp. 99-105 ◽  
Author(s):  
Ju-Yong Wang ◽  
Ju-Qiang Wang ◽  
Shi-Bao Lu

This study investigated the role of miR-628-5p and interferon-induced protein 44-like (IFI44L) in osteosarcoma (OS) and determined whether miR-628-5p modulated OS growth by regulating IFI44L. Based on the data downloaded from Gene Expression Omnibus (GEO) database, we revealed that the expression of IFI44L was downregulated in OS and low expression of IFI44L was correlated with better prognosis of patients with OS. Biological prediction of its upstream regulatory miRNAs on the miRWalk website found that miR-628-5p is a possible upstream regulatory miRNA of IFI44L. Luciferase activity assay demonstrated that miR-628-5p could bind to the 3′ untranslated region (UTR) of IFI44L, which proved the above prediction. The expression of miR-628-5p is upregulated in OS and high expression of miR-628-5p is correlated with poor prognosis of patients with OS. The results of RT-qPCR showed that the expression of miR-628-5p in MG-63, U2OS, Saos-2, and SW1353 cells was significantly higher than that in the hFOB1.19 cells. Downregulation of miR-628-5p by miR-628-5p inhibitor significantly inhibited the proliferation, migration, and invasion of MG-63 cells. By rescue assay, we found that knockdown of IFI44L rescued the proliferation and motility of miR-628-5p depleted MG-63 cells. Collectively, our present data illustrated that miR-628-5p promoted the growth and motility of OS at least partly by targeting IFI44L. Moreover, miR-628-5p and IFI44L might be proposed as promising biomarkers in OS diagnosis and treatment.


2019 ◽  
Vol 39 (1) ◽  
Author(s):  
Yan Jia ◽  
Lian-Mei Zhao ◽  
Han-Yu Bai ◽  
Cong Zhang ◽  
Su-Li Dai ◽  
...  

AbstractWe aimed to confirm the role of miR-1296-5p in gastric cancer and to identify its target genes. The expression of miR-1296-5p was measured in gastric cancer tissues and cell lines. The function of miR-1296-5p was examined by the overexpression and inhibition of its expression in typical gastric cell lines as well as SGC-7901 and MGC-803 cells. The targets of miR-1296-5p were identified by a luciferase activity assay. We found that miR-1296-5p was down-regulated in gastric cancer tissue and cell lines, and low expression levels of miR-1296-5p were associated with advanced clinical stage. Moreover, miR-1296-5p inhibited cell proliferation, migration, and invasion in SGC-7901 and MGC-803 cells. Then, we identified CDK6 and EGFR as novel targets of miR-1296-5p by a luciferase activity assay. Furthermore, the overexpression of miR-1296-5p suppressed the expression of CDK6 and EGFR. Our results indicated a tumor-suppressive role of miR-1296-5p through the translational repression of oncogenic CDK6 and EGFR in gastric cancer.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ming Li ◽  
Huan Liu ◽  
Juan Li ◽  
Shuai Guo ◽  
Yan Lv

Abstract Background Hypoxia is a prominent feature of solid cancer. This research aims to expose the role of mitochondrial creatine kinase 1 (CKMT1) in non-small cell lung cancer (NSCLC) progression and hypoxia adaptation. Methods The mRNA and protein expression of CKMT1 in NSCLC tissues were detected by using GEPIA web, immunohistochemistry and qRT-PCR. For hypoxia, cells were exposed to the 1% O2 atmosphere. The protein levels of HIF-1α and CKMT1 in H1650 and H1299 cells exposed to hypoxia were determined by western blot. The roles of CKMT1 on the proliferation, invasion and hypoxia adaptation of NSCLC cells were measured by CCK8, colony formation and transwell assays. Luciferase activity assay and HIF1 specific inhibitor (LW6) assay indicated the related function of hypoxia and CKMT1. Results CKMT1 was highly expressed in NSCLC tissues, and the high level of CKMT1 was significantly correlated with the high pathological grade of NSCLC. Knockdown of CKMT1 inhibited the cell proliferation and invasion of H1650 and H1299 cells, which could be rescued by hypoxia. Hypoxia induced the accumulation of HIF-1α and the expression of CKMT1 in H1650 and H1299 cells. Furthermore, HIF-1 as a transcription factor of CKMT1, could up-regulated the expression of CKMT1 under hypoxia. Conclusions In summary, CKMT1 has the potential as a target for NSCLC hypoxic targeted therapy.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zuojun Zhang ◽  
Ming Zhao ◽  
Guojie Wang

Abstract Background Osteosarcoma is a most common bone malignant tumor which threatens children and adolescents. Circular RNAs (circRNAs) fundamentally play essential roles in the progress and development of human cancers by sponging with microRNAs (miRNAs). However, the role of circRNAs in osteosarcoma is not clear. The aim of the study was to investigate the roles and molecular mechanism of circRNAs in osteosarcoma. Results The data from qRT-PCR showed that circ_0051079 expression was higher in osteosarcoma cells and tissues compared to their normal controls. Meanwhile, bioinformatic analysis indicated that circ_0051079 was a sponge of miR-26a-5p, which was verified by luciferase activity assay. Subsequently, TGF-β1 was verified as a putative target mRNA of miR-26a-5p by luciferase assay. Cellular function assays were conducted and the findings revealed that circ_0051079/miR-26a-5p/TGF-β1 regulated osteosarcoma proliferation and metastasis. Conclusion The study demonstrated that circ_0051079 could act as an oncogene via regulating miR-26a-5p/TGF-β1 and a potential biomarker for osteosarcoma diagnose.


2018 ◽  
Vol 38 (5) ◽  
Author(s):  
Bibo Tan ◽  
Yong Li ◽  
Qun Zhao ◽  
Liqiao Fan ◽  
Dong Wang

It has been reported that the expression of zinc finger protein 139 (ZNF139) and microRNA-185 (miR-185) were associated with proliferation, drug resistance of gastric cancer (GC) cells. However, the detailed mechanisms have not been fully investigated. The expression of ZNF139 in both GC tissues and cell lines was tested, then SGC7901/ADR or SGC7901 cells were transfected with ZNF139-siRNA, miR-185 analog, or pcDNA-ZNF139. Cell activity was determined by MTT assay. Real-time PCR and Western blot were utilized to detect ZNF139, miR-185, and multidrug resistance (MDR) related genes including MDR1/P-gp, GST-π, MRP-1, Bcl-2, TS and Bax. ChIP and dual luciferase activity assay were used to investigate regulation between ZNF139 and miR-185. Increased ZNF139 and decreased miR-185 expression were detected in GC tissues and cell lines. Transfection with ZNF139-siRNA into SGC7901/ADR cells markedly increased expression of miR-185, and treating with chemotherapeutic drugs ADR, 5-FU, L-OHP, the survival rate of SGC7901/ADR cells obviously decreased after ZNF139-siRNA transfection. On the other hand, transfection with pcDNA-ZNF139 in GC cell line SGC7901 resulted in an increased expression level of ZNF139 and a decline in the expression level of miR-185, meanwhile drug resistance of GC cells was clearly enhanced to ADR, 5-FU, L-OHP. Dual luciferase activity assay demonstrated that ZNF139 inhibited transcriptional activities of miR-185’s promoter in cells transfected with the reporter plasmid encompassing the upstream promoter region of miR-185 along with pcDNA-ZNF139. Our data reveal that ZNF139 might promote MDR gene MDR1/P-gp, MRP-1 and Bcl-2 by prohibiting miR-185.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1168-1168
Author(s):  
Jerry C. Cheng ◽  
Deepa Shankar ◽  
Stanley F. Nelson ◽  
Kathleen M. Sakamoto

Abstract CREB is a nuclear transcription factor that plays an important role in regulating cellular proliferation, memory, and glucose homeostasis. We previously demonstrated that CREB is overexpressed in bone marrow cells from a subset of patients with acute leukemia at diagnosis. Furthermore, CREB overexpression is associated with an increased risk of relapse and decreased event-free survival in adult AML patients. Transgenic mice that overexpress CREB in myeloid cells developed myeloproliferative/myelodysplastic syndrome after one year. To further understand the role of CREB in leukemogenesis and in normal hematopoiesis, we employed RNA interference methods to inhibit CREB expression. To achieve sustained, CREB-specific gene knockdown in leukemia and normal hematopoietic cells, a lentiviral-based small hairpin (shRNA) approach was taken. Three CREB specific shRNAs were generated and tested for efficiency of gene knockdown in 293T cells. Knockdown efficiency approached 90 percent by Western blot analysis compared to vector alone and luciferase controls. Human myeloid leukemia cell lines, K562, TF1, and MV411, were then infected with CREB shRNA lentivirus, sorted for GFP expression, and analyzed using quantitative real time (qRT)-PCR, Western blot analysis, and growth and viability assays. Lentiviral CREB-shRNA achieved between 50 to 90 percent knockdown of CREB compared to control shRNAs at the protein and mRNA levels. To control for non-specific effects, we performed qRT-PCR analysis of the interferon response gene, OAS1, which was not upregulated in cells transduced with CREB shRNA constructs. Within 72 hours, cells transduced with CREB shRNA had decreased proliferation and survival. Similar results were obtained with murine leukemia cells (NFS60 and BA/F3 bcr-abl).To study the role of CREB in normal hematopoiesis, both primary murine and human hematopoietic cells were transduced with our shRNA constructs, and methylcellulose-based colony assays were performed. Primary hematopoietic cells infected with CREB shRNA lentivirus demonstrated a 5-fold decrease in colony number compared to control virus-infected cells (p<0.05). Bone marrow colonies consisted of myeloid progenitor cells that were mostly Mac-1+ by FACs analysis. Interestingly, there were fewer differentiated cells in the CREB shRNA transduced cells compared to vector control or wild type cells, suggesting that CREB is critical for both myeloid cell proliferation and differentiation. To study the in vivo effects of CREB knockdown on leukemia progression, we studied mice injected with BA/F3 cells that express both bcr/abl with the T315I mutation and a luciferase reporter gene. BA/F3 cells expressing the T315I mutation have a 2-fold increase in CREB overexpression compared to wild-type cells. Disease progression was monitored using bioluminescence imaging with luciferin. CREB knockdown was 90 percent after transduction and prior to injection into SCID mice. We observed improved survival of mice injected with CREB shRNA transduced BA/F3 bcr-abl (T315I) compared to vector control cells. To understand the mechanism of growth suppression resulting from CREB downregulation, we performed microarray analysis with RNA from CREB shRNA transduced K562 and TF1 cells. Several genes were downregulated using a Human Affymetrix chip. Most notable was Beclin1, a tumor suppressor gene often deleted in prostate and breast cancer that has been implicated in autophagy. Our results demonstrate that CREB is required for normal and leukemic cell proliferation both in vitro and in vivo.


2021 ◽  
Author(s):  
Jiansheng Xie ◽  
Hui Wang ◽  
Caiqun Luo ◽  
Xiaoxia Wu ◽  
Jianming Zhang ◽  
...  

Abstract Background: Various circular RNAs (circRNAs) are dysregulated in the placenta of fetal growth restriction fetuses, but their role and regulatory mechanisms have not been fully elucidated. Herein, we aimed to elucidate the role of hsa_circ_0081343 in regulating the migration, invasion, and apoptosis in the human extravillous trophoblast HTR-8 cells.Methods: circRNA and miRNA levels were examined using quantitative real-time PCR (RT-PCR). Overexpression plasmid constructs and siRNA were used to overexpress and knockdown hsa_circ_0081343, respectively. Transwell assay and flow cytometry analysis were performed to evaluate the effect of hsa_circ_0081343 or miR-210-5p on migration, invasion, and apoptosis. Protein levels were analyzed using western blot. Dual luciferase activity assay and anti-AGO2 RNA immunoprecipitation (RIP) assays were performed to identify the relationship between miR-210-5p and hsa_circ_0081343.Results: Hsa_circ_0081343 expression was significantly downregulated in 37 FGR placental tissues as compared to healthy placental control tissues. Hsa_circ_0081343 overexpression possibly inhibits apoptosis by downregulating the expression of cleaved caspase 3 and caspase 9 and alleviates the migration and invasion of HTR-8 cells by inducing the expression of MMP2 and MMP9. The dual luciferase activity and anti-AGO2 RIP assay results showed that hsa_circ_0081343 binds to miR-210-5p. miR-210-5p overexpression eliminated the effect of hsa_circ_0081343 overexpression in HTR-8 cells. Finally, DLX3 was identified as a direct target of miR-210-5p. Conclusions: Hsa_circ_0081343 regulates the migration, invasion, and apoptosis of HTR-8 cells via the hsa-miR-210-5p/DLX3 axis. Thus, hsa_circ_0081343 plays a key role in the etiology and pathogenesis of FGR implicating its importance as a novel candidate for targeted FGR therapy.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Min Zhang ◽  
Wei Liu ◽  
Qingan Zhang ◽  
Hongfeng Hu

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by progressive neuronal loss in different brain regions, including the dopaminergic (DA) neurons of the substantia nigra pars compacta (SNc). The aggregation of α-synuclein (α-Syn) plays an essential role in the progression of PD-related neuron toxicity. In this study, bioinformatic analysis was used to confirm differentially expressed genes between patients with PD and healthy donors. Immunofluorescence was used to study the aggregation of α-Syn. Flow cytometry was used to confirm the apoptosis of neurons. Western blot was used to investigate the underlying mechanism. Coimmunoprecipitation (co-IP) was used to verify the interaction between proteins. Luciferase activity assay was used to confirm the target gene of miRNA. In vitro protein ubiquitination assay was used to ascertain the role of S-phase kinase-associated protein 1 (SKP1) on the ubiquitination processes of polo-like kinase 2 (PLK2). The result indicated that miR-101-3p was overexpressed in the substantia nigra of the postmortem brains of patients with PD. The underlying role was investigated in the SH-SY5Y cell line. The overexpression of α-Syn did not result in toxicity or aggregation. However, the co-overexpression of miR-101-3p and α-Syn promoted aggregation and neuron toxicity. Luciferase activity assay indicated that SKP1 is a target gene of miR-101-3p. The co-IP experiment confirmed that SKP1 could directly interact with PLK2. In vitro protein ubiquitination assay confirmed that SKP1 could promote the ubiquitination and subsequent protein degradation of PLK2. We also observed that the cotransfection of short hairpin RNA that targets PLK2 and α-Syn overexpression plasmid results in the endoplasmic reticulum stress of neurons. Our results collectively provide evidence that miR-101-3p contributes to α-Syn aggregation in neurons through the miR-101-3p/SKP1/PLK2 pathway.


2020 ◽  
Author(s):  
Lizhe Zhu ◽  
Shibo Yu ◽  
Siyuan Jiang ◽  
Guanqun Ge ◽  
Yu Yan ◽  
...  

Abstract BackgroundThe homobox (HOX) gene family as a transcription factor encoding a specific nuclear protein is essential for embryonic development, differentiation, and homeostasis. The role of HOXB3 protein varies in different tumors. This study aims to explore the role of the HOXB3 gene in breast cancer.MethodDifferentiated expressed genes were screened by analyzing metastatic breast cancer gene chip data in TCGA and GEO database. The function of selected HOXB3 gene was also analyzed by GEPIA, Kaplan-Meier Plotter, Breast Cancer Gene-Expression Miner and metascape. Molecular biology methods such as qRT-PCR, western blot and IF was used to verify bio-informatics findings.ResultsBoth bio-informatics analyses and western blot showed that HOXB3 was lost in breast cancer compared to normal breast tissue. Survival analysis also showed that lower expression of HOXB3 was associated with poor prognosis. Bio-informatics analyses further showed that HOXB3 was positively correlated with hormone receptors. qRT-PCR, immunofluorescence and western blot also confirmed that HOXB3 had the highest expression in the immortalized breast epithelial cell line MCF-10A, lower in luminal breast cancer cell line T47D and the lowest in triple negative breast cancer (TNBC) cell line MDA-MB-231. Metascape for GO analysis of GEO data provided possible mechanism that HOXB3 could positively regulate cell adhesion, inhibit cell proliferation and activate immune response in breast cancer, and considered that HOXB3 might cause cell malignant transformation through the above pathways.ConclusionIn summary, HOXB3 expression was decreased in breast cancer, especially in hormone receptor-negative breast cancer. The lower expression of HOXB3 was associated with poor prognosis. It might become a new biomarker to predict prognosis of breast cancer.


Sign in / Sign up

Export Citation Format

Share Document