scholarly journals Effect of Flood Pulse on the Functional Diversity and Traits Composition of Birds With Different Degrees of Wetland Dependence in the Brazilian Pantanal

Author(s):  
Angélica Vilas Boas da Frota ◽  
Breno Dias Vitorino ◽  
Sara Miranda Almeida ◽  
Josué Ribeiro da Silva Nunes ◽  
Carolina Joana Da Silva

Abstract Hydrological dynamics of the Pantanal wetland drive the availability of resources and niche for aquatic and terrestrial fauna. We consider that changes in the hydrological regime of this floodplain can affect species richness, abundance and functional structure of waterbirds, wetland birds and non-wetland birds. Our study aimed to assess whether the degree of wetland dependence influences the response of bird groups to the flood pulse. We conducted the bird survey in the Paraguay River floodplain system, in five sampling sites, covering the periods of drought, flooding, full flood and ebb of the 2017–2018 hydrological cycle. Species richness and abundance were higher for non-wetland birds than waterbirds and wetland birds. On the other hand, we found that the higher the degree of wetland dependence by birds, the higher the differences in the functional-trait values. Species richness, abundance and all metrics of functional diversity varied significantly when there was an interaction between the degree of wetland dependence and the hydrological period. In all hydrological periods, bird groups occupied distinct niches. Traits such as foraging around or below the water surface were among the dominant functional traits in all hydrological periods. We emphasize the need to consider the functional traits of species in ecological studies of wetlands since measuring only species richness may not reflect the characteristics inherent to this type of ecosystem. In addition, the conservation of wetlands directly implies the maintenance of various niches throughout the hydrological periods, either for dependent or non-dependent bird species in wetlands.

Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 778
Author(s):  
Yesica Pallavicini ◽  
Fernando Bastida ◽  
Eva Hernández-Plaza ◽  
Sandrine Petit ◽  
Jordi Izquierdo ◽  
...  

Arable field margins are valuable habitats providing a wide range of ecosystem services in rural landscapes. Agricultural intensification in recent decades has been a major cause of decline in plant diversity in these habitats. However, the concomitant effects on plant functional diversity are less documented, particularly in Mediterranean areas. In this paper, we analyzed the effect of margin width and surrounding landscape (cover and diversity of land use and field size), used as proxies for management intensity at local and landscape scales, on plant species richness, functional diversity and functional trait values in margins of winter cereal fields in southern Spain. Five functional traits were selected: life form, growth form, seed mass, seed dispersal mode and pollination type. RLQ and fourth-corner analyses were used to link functional traits and landscape variables. A total of 306 plant species were recorded. Species richness and functional diversity were positively related to margin width but showed no response to landscape variables. Functional trait values were affected neither by the local nor landscape variables. Our results suggest that increasing the margin width of conventionally managed cereal fields would enhance both taxonomic and functional diversity of margin plant assemblages, and thus the services they provide to the agro-ecosystem.


2019 ◽  
Vol 4 (2) ◽  
pp. 75-83
Author(s):  
Federico Morelli ◽  
Zbigniew Kwieciński ◽  
Piotr Indykiewicz ◽  
Łukasz Jankowiak ◽  
Paweł Szymański ◽  
...  

Abstract Farmland landscapes are recognized as important ecosystems, not only for their rich biodiversity but equally so for the human beings who live and work in these places. However, biodiversity varies among sites (spatial change) and among seasons (temporal change). In this work, we tested the hypothesis that bird diversity hotspots distribution for breeding is congruent with bird diversity hotspots for wintering season, focusing also the representation of protected areas for the conservation of local hotspots. We proposed a framework based on the use of species richness, functional diversity, and evolutionary distinctiveness to characterize avian communities. Although our findings show that the spatial distribution of local bird hotspots differed slightly between seasons, the protected areas’ representation was similar in both seasons. Protected areas covered 65% of the most important zones for breeding and 71% for the wintering season in the farmland studied. Functional diversity showed similar patterns as did bird species richness, but this measure can be most effective for highlighting differences on bird community composition. Evolutionary distinctiveness was less congruent with species richness and functional diversity, among seasons. Our findings suggest that inter-seasonal spatial congruence of local hotspots can be considered as suitable areas upon which to concentrate greater conservation efforts. However, even considering the relative congruence of avian diversity metrics at a local spatial scale, simultaneous analysis of protected areas while inter-seasonally considering hotspots, can provide a more complete representation of ecosystems for assessing the conservation status and designating priority areas.


2019 ◽  
Vol 70 (11) ◽  
pp. 1611 ◽  
Author(s):  
Xiaoyun Bai ◽  
Congcong Guo ◽  
Mamun Abdullah Al ◽  
Alan Warren ◽  
Henglong Xu

Multifunctional trait analysis is increasingly recognised as an effective tool for assessing ecosystem function and environmental quality. Here, a baseline study was performed at four depths (i.e. 1, 2, 3.5 and 5m) in Yellow Sea coastal waters of northern China in order to determine the optimal depth for bioassessment using biological traits of biofilm-dwelling ciliates. Community-weighted means (CWM) from functional traits system were used to summarise the trait distribution and functional diversity of ciliates among the four depths during a 1-month colonisation period. Functional trait distribution revealed a clear temporal variation among the four depths. In total, 3 of 17 functional traits (i.e. feeding type, body size and flexibility) showed significant temporal patterns. Bootstrapped averaging and permutational multivariate analysis of variance (PERMANOVA) tests demonstrated that the colonisation pattern of biofilm-dwelling ciliates as expressed by CWM at 1 and 2m differed significantly from those at 3.5 and 5m. Functional diversity indices showed lower variability at 1 and 2m than at 3.5 and 5m. These results suggest that 1 and 2m are the preferred sampling depths for bioassessment of marine water quality using biological traits of biofilm-dwelling ciliates.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tomás A. Altamirano ◽  
Devin R. de Zwaan ◽  
José Tomás Ibarra ◽  
Scott Wilson ◽  
Kathy Martin

Abstract Mountains produce distinct environmental gradients that may constrain or facilitate both the presence of avian species and/or specific combinations of functional traits. We addressed species richness and functional diversity to understand the relative importance of habitat structure and elevation in shaping avian diversity patterns in the south temperate Andes, Chile. During 2010–2018, we conducted 2202 point-counts in four mountain habitats (successional montane forest, old-growth montane forest, subalpine, and alpine) from 211 to 1,768 m in elevation and assembled trait data associated with resource use for each species to estimate species richness and functional diversity and turnover. We detected 74 species. Alpine specialists included 16 species (22%) occurring only above treeline with a mean elevational range of 298 m, while bird communities below treeline (78%) occupied a mean elevational range of 1,081 m. Treeline was an inflection line, above which species composition changed by 91% and there was a greater turnover in functional traits (2–3 times greater than communities below treeline). Alpine birds were almost exclusively migratory, inhabiting a restricted elevational range, and breeding in rock cavities. We conclude that elevation and habitat heterogeneity structure avian trait distributions and community composition, with a diverse ecotonal sub-alpine and a distinct alpine community.


2015 ◽  
Vol 282 (1811) ◽  
pp. 20142844 ◽  
Author(s):  
Greet De Coster ◽  
Cristina Banks-Leite ◽  
Jean Paul Metzger

Habitat loss often reduces the number of species as well as functional diversity. Dramatic effects to species composition have also been shown, but changes to functional composition have so far been poorly documented, partly owing to a lack of appropriate indices. We here develop three new community indices (i.e. functional integrity, community integrity of ecological groups and community specialization ) to investigate how habitat loss affects the diversity and composition of functional traits and species. We used data from more than 5000 individuals of 137 bird species captured in 57 sites in the Brazilian Atlantic Forest, a highly endangered biodiversity hotspot. Results indicate that habitat loss leads to a decrease in functional integrity while measures of functional diversity remain unchanged or are even positively affected. Changes to functional integrity were caused by (i) a decrease in the provisioning of some functions, and an increase in others; (ii) strong within-guild species turnover; and (iii) a replacement of specialists by generalists. Hence, communities from more deforested sites seem to provide different but not fewer functions. We show the importance of investigating changes to both diversity and composition of functional traits and species, as the effects of habitat loss on ecosystem functioning may be more complex than previously thought. Crucially, when only functional diversity is assessed, important changes to ecological functions may remain undetected and negative effects of habitat loss underestimated, thereby imperiling the application of effective conservation actions.


2015 ◽  
Author(s):  
Jonathan S Lefcheck ◽  
J. Emmett Duffy

The use of functional traits to explain how biodiversity affects ecosystem functioning has attracted intense interest, yet few studies have a priori altered functional diversity, especially in multitrophic communities. Here, we manipulated multivariate functional diversity of estuarine grazers and predators within multiple levels of species richness to test how species richness and functional diversity predicted ecosystem functioning in a multitrophic food web. Community functional diversity was a better predictor than species richness for the majority of ecosystem properties, based on general linear mixed effects models. Combining inferences from 8 traits into a single multivariate index increased prediction accuracy of these models relative to any individual trait. Structural equation modeling revealed that functional diversity of both grazers and predators was important in driving final biomass within trophic levels, with stronger effects observed for predators. We also show that different species drove different ecosystem responses, with evidence for both sampling effects and complementarity. Our study extends experimental investigations of functional trait diversity to a multilevel food web, and demonstrates that functional diversity can be more accurate and effective than species richness in predicting community biomass in a food web context.


2015 ◽  
Author(s):  
Jonathan S Lefcheck ◽  
J. Emmett Duffy

The use of functional traits to explain how biodiversity affects ecosystem functioning has attracted intense interest, yet few studies have a priori manipulated functional diversity, especially in multitrophic communities. Here, we manipulated multivariate functional diversity of estuarine grazers and predators within two levels of species richness to test how species richness and functional diversity predicted ecosystem functioning in a multitrophic food web. Community functional diversity was a better predictor than species richness for the majority of ecosystem properties, based on general linear mixed effects models. Combining inferences from 8 traits into a single multivariate index increased prediction accuracy of these properties relative to any individual trait. Structural equation modeling revealed that functional diversity of both grazers and predators was important in driving final biomass within and between trophic levels, with stronger effects observed for predators. We also show that different species drove different ecosystem responses, with evidence for both sampling effects and complementarity. Our study extends experimental investigations of functional trait diversity to a multilevel food web, and demonstrates that functional diversity can be more accurate and effective than species richness in predicting community biomass in a food web context.


Author(s):  
Adriana Maria Güntzel ◽  
William Marcos da Silva ◽  
Eliana Aparecida Panarelli

The Taquari River is one of the most important tributaries of the Paraguay River, whose sediments are carried and deposited on the plain forming the largest alluvial fan in the world, known as Pantanal. In the floodplain, the course of the river has been modified by the sedimentation process, resulting in lakes with different degrees of connectivity with the river. This study assessed the influence of connectivity on the physical and chemical characteristics of water along a hydrological cycle in oxbow lakes of the Taquari River floodplain, in Mato Grosso do Sul, Brazil. Sampling was carried out monthly, from May 2005 to June 2006.The physical and chemical data of the water and the variables of river level and rainfall intensity were correlated by Principal Component Analysis (PCA). Limnological differences resulted from distinct degrees of connectivity between the oxbow lakes and the Taquari River. Variations in the dry and rainy seasons established a gradient that extends over a space-time continuum and generates greater environmental heterogeneity and, consequently, greater biodiversity. Thus we conclude that this mosaic of lakes and the surrounding landscape requires protection and preservation because of its importance for biodiversity conservation.


2016 ◽  
Vol 38 (5) ◽  
pp. 511 ◽  
Author(s):  
Zhao Na ◽  
Wang Zhengwen ◽  
Shao Xinqing ◽  
Wang Kun

The diversity–stability relationship has been addressed and debated for decades, but how this relationship is affected by nutrient availability remains contentious. In the present study we assessed the effects of plant diversity, in terms of species richness, functional group composition and functional trait diversity, on the spatial stability of net primary productivity (NPP) following nitrogen and phosphorus application. In addition, we explored how functional traits at the species level contribute to the spatial stability of NPP. The results support the hypothesis that greater diversity leads to higher spatial stability. This relationship was highly dependent on soil nutrient availability, and increasing species richness or functional trait diversity significantly increased spatial variation of NPP under a high N fertilisation level. The effects of high mineral fertilisation rates may perhaps have masked the effects of plant diversity. Although species richness or functional trait diversity of the original and modified communities from which species with particular functional traits had been removed were significantly different, there were no differences in the coefficients of variation in the NPP of those communities. The lack of difference demonstrated that the relationship between spatial variability and biodiversity depended on the measure of diversity applied and that the functional group composition exerted a stronger effect than other diversity measures. Further analyses revealed that spatial stability of NPP was enhanced with increased diversity in vegetative plant height, rooting depth and the presence of legume, and diminished with diversity in the root system type and life cycle under some fertilisation treatments. The present study demonstrates that the relationship between biodiversity and ecosystem functioning is variable with different diversity, identity and environmental factors. Evaluating the contribution of particular traits to community stability will ultimately help us better understand the mechanisms underlying the diversity–stability relationship.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Erick J. Lundgren ◽  
Simon D. Schowanek ◽  
John Rowan ◽  
Owen Middleton ◽  
Rasmus Ø. Pedersen ◽  
...  

AbstractPrehistoric and recent extinctions of large-bodied terrestrial herbivores had significant and lasting impacts on Earth’s ecosystems due to the loss of their distinct trait combinations. The world’s surviving large-bodied avian and mammalian herbivores remain among the most threatened taxa. As such, a greater understanding of the ecological impacts of large herbivore losses is increasingly important. However, comprehensive and ecologically-relevant trait datasets for extinct and extant herbivores are lacking. Here, we present HerbiTraits, a comprehensive functional trait dataset for all late Quaternary terrestrial avian and mammalian herbivores ≥10 kg (545 species). HerbiTraits includes key traits that influence how herbivores interact with ecosystems, namely body mass, diet, fermentation type, habitat use, and limb morphology. Trait data were compiled from 557 sources and comprise the best available knowledge on late Quaternary large-bodied herbivores. HerbiTraits provides a tool for the analysis of herbivore functional diversity both past and present and its effects on Earth’s ecosystems.


Sign in / Sign up

Export Citation Format

Share Document