Novel and naturally derived Hydroxyapatite/cellulose nanofibre/curcumin biocomposite for tissue engineering applications

Author(s):  
Sridevi S ◽  
Ramya S ◽  
Kavitha L ◽  
Gopi Dhanaraj

Abstract Hydroxyapatite (HAp) based composite materials are attaining increasing interest as a potential therapeutic agent for tissue engineering application. In the present study, HAp based composite material is synthesized from biowaste in a cost effective way. Fish bone derived HAp is combined with a cellulose nanofibre (CNF) and curcumin (Cur) as a composite for enhanced thermal, biological and mechanical properties. The HAp/CNF/Cur composite is prepared with different concentrations of CNF (1–3.wt%) and Cur (0.5–1.5 wt%), respectively. Different characterization techniques like Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and thermal gravimetric (TGA) analysis were engaged to assess the functional groups, phase composition, morphology, elemental composition and thermal analysis of the composite. The mechanical strength of the composite is examined using Vickers micro-hardness test. In addition, antibacterial nature of the composite is evaluated against negative and positive bacteria. The viability of human osteosarcoma MG 63 cells over the composite is studied at different concentrations of 1, 3, 7, 10 and 15 µg for 24 h of incubation. Overall, the present investigation shows that the as-synthesized HAp/CNF/Cur composite with enhanced thermal, mechanical and biological properties will be a prospective aspirant for tissue engineering therapeutics.

2020 ◽  
Vol 65 (3) ◽  
pp. 273-287 ◽  
Author(s):  
Farnaz Ghorbani ◽  
Ali Zamanian ◽  
Melika Sahranavard

AbstractThere are many methods used to fabricate the scaffolds for tissue regeneration, among which freeze casting has attracted a great deal of attention due to the capability to create a unidirectional structure. In this study, polycaprolactone (PCL) scaffolds were fabricated by freeze-casting technology in order to create porous microstructure with oriented open-pore channels. To induce biomineralization, and to improve hydrophilicity and cell interactions, mussel-inspired polydopamine (PDA) was coated on the surface of the freeze-cast PCL constructs. Then, the synergistic effects of oriented microstructure and deposited layer on efficient reconstruction of injured bone were studied. Microscopic observations demonstrated that, the coated layer did not show any special change in lamellar microstructure of the scaffolds. Water-scaffold interactions were evaluated by contact angle measurements, and they demonstrated strong enhancement in the hydrophilicity of the polymeric scaffolds after PDA coating. Biodegradation ratio and water uptake evaluation confirmed an increase in the measured values after PDA precipitation. The biomineralization of the PDA-coated scaffolds was characterized by field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD). Obtained results confirmed biomineralization of the constructs after a 28-day immersion in a simulated body fluid (SBF) solution. Mechanical analysis demonstrated higher compressive strength after PDA coating. L929 fibroblast cell viability and attachment illustrated that PDA-coated PCL scaffolds are able to support cell adhesion and proliferation. The increased secretion of alkaline phosphatase (ALP) after culturing osteosarcoma cell lines (MG-63) revealed the initial capability of scaffolds to induce bone regeneration. Therefore, the PDA-coated scaffolds introduce a promising approach for bone tissue engineering application.


RSC Advances ◽  
2015 ◽  
Vol 5 (68) ◽  
pp. 55075-55087 ◽  
Author(s):  
Subramani Kandhasamy ◽  
Giriprasath Ramanathan ◽  
Jayabal Kamalraja ◽  
Ravichandran Balaji ◽  
Narayanasamy Mathivanan ◽  
...  

The synthesis of novel chromen and pyrano chromen-5-one derivatives (CCN) has obtained in simple experimental method. The CCN and collagen based scaffold showed excellent biological properties to act as biomaterial in tissue engineering application.


Author(s):  
Gayathri Chakrapani ◽  
Jaykumar Gladstone Christopher ◽  
Bindia sahu

Fabrication of biomaterials for Tissue Engineering application by bioprinting has gained enormous attention in the research field, owing to their rapid and reproducibility factor. Progress in organic based mesoporous particles is of great interest in order to accomplish in tissue engineering treatments. Recently, researchers are focusing on different 3D bioinks for attaining 3D matrices to accommodate the drugs and cells for biological efficacies. Bioprinting is a promising field of biomaterials and regenerative medicine for the next generation therapeutics. Different polymeric substances are being evaluated for their printablity based on their rheological and biological properties. Structural fidelity is stabilized by crosslinking methods and their adaptability to microenvironment is assessed using Invitro assays. External Factors such as concentration, temperature, medium and crosslinking agents are the critical determinants for the bionks to achieve the required functionality. Moreover, the choice base chemicals used for the formulation plays a vital role in the cell viability and proliferation that lead to specific tissue growth. The mechanical strength, elastic moduli to bear strength is anchored by the porous nature of the printed scaffolds. Therefore, the influence of porosity in the mechanical and biological strength adds an appropriate value to the printed biomaterial. The present review discusses about the significance of bioprinting technique and strategies employed for printability and to achieve porosity in the developed materials


Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 22
Author(s):  
S. Shwetha Priyadharshini ◽  
Jayachamarajapura Pranesh Shubha ◽  
Jaydev Shivalingappa ◽  
Syed Farooq Adil ◽  
Mufsir Kuniyil ◽  
...  

In this work, ZnO nanocrystals (NCs) have been effectively synthesized by a simple, efficient and cost-effective method using coconut husk extract as a novel fuel. The synthesized NCs are characterized by UV-Vis, XRD, FT-IR, SEM, EDX, Raman and PL studies. The obtained ZnO were found to be UV-active with a bandgap of 2.93 eV. The X-ray diffraction pattern confirms the crystallinity of the ZnO with hexagonally structured ZnO with a crystallite size of 48 nm, while the SEM analysis reveals the hexagonal bipyramid morphology. Photocatalytic activities of the synthesized ZnO NCs are used to degrade methylene blue and metanil yellow dyes.


Author(s):  
M.T. Gouasmi ◽  
A.S. Benosman ◽  
Hamed Taïbi ◽  
N. Kazi Tani ◽  
Mohammed Belbachir

Today, only a very small portion of plastic waste is recycled, while huge quantities remain untreated and are becoming increasingly worrying. The search for other alternatives is still an urgent necessity so that these wastes can be reduced to the maximum; their valorization may be the best solution. This study concerns a new technique for the valorization of polyethylene terephthalate (PET) plastic bottle wastes, in order to design a composite material, i.e. siliceous sand-PET, which then gives a Waste Plastic Lightweight Aggregate “WPLA”. Our hope is to provide solutions to specific and general applications in the field of construction. Some observations are noted on the effects of this composite on destructive and non-destructive testing, such as the physical properties and mechanical behaviors of an industrial composite screed, by substituting 0, 25, 50, 75 and 100% by weight of natural aggregate by this composite. Scanning electron microscope (SEM), FT-IR and X-ray diffraction analyses were used to better understand the cement hydration products of the composite mortars. Some possible uses of this screed, or even of the composite itself, can subsequently be recommended. Encouraging results were obtained regarding the usage of this composite aggregate as an eco-material in the field of construction for sustainable development. In addition, it provides environmental-friendly and cost-effective solutions in using recycled materials for concrete construction applications.


2020 ◽  
Vol 20 (9) ◽  
pp. 5356-5359
Author(s):  
Tae In Hwang ◽  
Joon Yeon Moon ◽  
Jeong In Kim ◽  
Chan Hee Park ◽  
Cheol Sang Kim

Deer antler velvet (DAV), Cornu Cervi Pantotrichum, has been known for the outstanding growth rate and used in extracted liquid form in oriental herbal medicine for the tissue regeneration. The DAV is also famous for the abundance of many different minerals, proteins, growth factors and interleukins. The immense amount of DAV is consumed to produce DAV extract in Asian countries. However, the mechanical strength and the morphologic features of DAV have been overlooked. In this study, we revisited the possibility of DAV as a bone tissue scaffold. We first obtained DAV particles via physical decellularization followed by levigation procedure and then applied to the fabrication of three-dimensional porous alginate/DAVP sponge through lyophilizing alginate/DAVP hydrogel as a potential bone tissue scaffold source. The morphological and physicochemical properties of alginate/DAVP sponge were characterized using UTM, SEM, FE-SEM, and FT-IR. The alginate-based highly porous sponge demonstrated the interconnected porous structure with DAVP and improved mechanical properties. We expected both alginate/DAVP and DAVP are potential for tissue engineering application.


Author(s):  
Manne Anupama Ammulu ◽  
K. Vinay Viswanath ◽  
Ajay Kumar Giduturi ◽  
Praveen Kumar Vemuri ◽  
Ushakiranmayi Mangamuri ◽  
...  

Abstract Background Unlike chemical techniques, the combination of metal oxide nanoparticles utilizing plant concentrate is a promising choice. The purpose of this work was to synthesize magnesium oxide nanoparticles (MgO-NPs) utilizing heartwood aqueous extract of Pterocarpus marsupium. The heartwood extract of Pterocarpus marsupium is rich in polyphenolic compounds and flavonoids that can be used as a green source for large-scale, simple, and eco-friendly production of MgO-NPs. The phytoassisted synthesis of MgO is characterized by UV-Visible spectroscopy, X-ray diffraction (XRD), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) with EDS (energy dispersive X-ray spectroscopy), and transmission electron microscopy (TEM). Results The formation of MgO-NPs is confirmed by a visual color change from colorless to dark brown and they displayed a wavelength of 310 nm in UV-Spectrophotometry analysis. The crystalline nature of the obtained biosynthesized nanoparticles are revealed by X-ray diffraction analysis. SEM results revealed the synthesized magnesium oxide nanoparticles formed by this cost-effective method are spherically shaped with an average size of < 20 nm. The presence of magnesium and oxygen were confirmed by the EDS data. TEM analysis proved the spherical shape of the nanoparticles with average particle size of 13.28 nm and SAED analysis confirms the crystalline nature of MgO-NPs. FT-IR investigation confirms the existence of the active compounds required to stabilize the magnesium oxide nanoparticles with hydroxyl and carboxyl and phenolic groups that act as reducing, stabilizing, and capping agent. All the nanoparticles vary in particle sizes between 15 and 25 nm and obtained a polydispersity index value of 0.248. The zeta-potential was measured and found to be − 2.9 mV. Further, MgO-NPs were tested for antibacterial action against Staphylococcus aureus (Gram-positive bacteria) and Escherichia coli (Gram-negative bacteria) by minimum inhibitory concentration technique were found to be potent against both the bacteria. The blended nanoparticles showed good antioxidant activity examined by the DPPH radical scavenging method, showed good anti-diabetic activity determined by alpha-amylase inhibitory activity, and displayed strong anti-inflammatory activity evaluated by the albumin denaturation method. Conclusions The investigation reports the eco-friendly, cost-effective method for synthesizing magnesium oxide nanoparticles from Pterocarpus marsupium Rox.b heartwood extract with biomedical applications. Graphical abstract


2017 ◽  
Vol 894 ◽  
pp. 14-16
Author(s):  
Nida Iqbal ◽  
M.R. Abdul Kadir

The recent trend in bioceramics research is mainly concentrated on bioactive ceramics, i.e. hydroxyapatite, tricalcium phosphates and bioactive glasses, as they exhibit superior biological properties over other materials. Among these tricalcium phosphates have been found very important member due to their biocompatible and biodegradable properties that can help to promote new bone formation when implanted in a bone defect site. Therefore the aimed of the present work was to investigate the synthesis of tricalcium phosphate via simple microwave route at Ca/P molar ratios below, 1.67 and at pH of reaction environment equal 5. The detail characterizations of the prepared samples were carried out using Energy-dispersive X-ray spectroscopy (EDX), FT-IR spectroscopy (FTIR) and X-Ray Diffraction (XRD) analysis. From the analysis of EDX, FTIR and XRD patterns, the formation of β-TCP was confirmed.


2021 ◽  
Vol 18 (1) ◽  
pp. 44-51
Author(s):  
Sathi Banerjee ◽  
Soumya Mukherjee ◽  
Srinath Ranjan Ghosh

The present article reports a simple and cost-effective process to prepare the crystalline MgAl2O4 spinel using non-stoichometric amount of magnesium nitrate, aluminium nitrate by solution combustion route. Thiourea was used as a fuel and reducing agent while soaking was carried at 1000ºC with different soaking periods. After slow drying of mixed solutions at 80ºC for 4-5 hours a gel was formed and got characterized by DTA/TGA (Differential Thermal Analysis and Thermal Gravimetric Analysis) to observe the effect of temperature variation and identify the range of temperature where crystalline nature of the powder was noted. Powder sample was prepared from the gel after annealing at 1000ºC followed by soaking for 4 hours, 5 hours, 6 hours to compare the variation of particle size with respect to time. The calcined powders were characterized by XRD (X-ray powder diffraction) to determine the phases and crystal planes present in the sample, FT-IR (Fourier-transform infrared spectroscopy) to study the types of metal oxide or metal-metal bond present in the sample along with M-O coordination studies, FESEM (Field emission scanning electron microscopy) to observe the morphological structure of the sample, EDAX (Energy Dispersive X-Ray Analysis) to observe the percentage of each element present in the sample. Bulk densities were estimated from 2.4156 g/cm3 to 2.8571 g/cm3 and the rapid increase in apparent porosity of samples 7.4289%, 10.3630% and 32.51% for 4 hours 5 hours and 6 hours respectively were also noted. It had been observed that the average crystal size of spinel particles was about 48 nm, 36 nm, and 47 nm respectively. Finally, hardness of spinel was evaluated by Vicker Hardness test and evaluated to be10.52GPa (1073 HV), 4.087GPa (416.7HV) and 5.079 GPa (517.9HV).


Sign in / Sign up

Export Citation Format

Share Document