scholarly journals EVALUATION OF PROPERTIES OF NON-STOICHOMETRIC ALUMINA MAGNESIA SPINEL USING THIOUREA AS FUEL BY VARYING SOAKING TIME

2021 ◽  
Vol 18 (1) ◽  
pp. 44-51
Author(s):  
Sathi Banerjee ◽  
Soumya Mukherjee ◽  
Srinath Ranjan Ghosh

The present article reports a simple and cost-effective process to prepare the crystalline MgAl2O4 spinel using non-stoichometric amount of magnesium nitrate, aluminium nitrate by solution combustion route. Thiourea was used as a fuel and reducing agent while soaking was carried at 1000ºC with different soaking periods. After slow drying of mixed solutions at 80ºC for 4-5 hours a gel was formed and got characterized by DTA/TGA (Differential Thermal Analysis and Thermal Gravimetric Analysis) to observe the effect of temperature variation and identify the range of temperature where crystalline nature of the powder was noted. Powder sample was prepared from the gel after annealing at 1000ºC followed by soaking for 4 hours, 5 hours, 6 hours to compare the variation of particle size with respect to time. The calcined powders were characterized by XRD (X-ray powder diffraction) to determine the phases and crystal planes present in the sample, FT-IR (Fourier-transform infrared spectroscopy) to study the types of metal oxide or metal-metal bond present in the sample along with M-O coordination studies, FESEM (Field emission scanning electron microscopy) to observe the morphological structure of the sample, EDAX (Energy Dispersive X-Ray Analysis) to observe the percentage of each element present in the sample. Bulk densities were estimated from 2.4156 g/cm3 to 2.8571 g/cm3 and the rapid increase in apparent porosity of samples 7.4289%, 10.3630% and 32.51% for 4 hours 5 hours and 6 hours respectively were also noted. It had been observed that the average crystal size of spinel particles was about 48 nm, 36 nm, and 47 nm respectively. Finally, hardness of spinel was evaluated by Vicker Hardness test and evaluated to be10.52GPa (1073 HV), 4.087GPa (416.7HV) and 5.079 GPa (517.9HV).

2021 ◽  
Author(s):  
Sridevi S ◽  
Ramya S ◽  
Kavitha L ◽  
Gopi Dhanaraj

Abstract Hydroxyapatite (HAp) based composite materials are attaining increasing interest as a potential therapeutic agent for tissue engineering application. In the present study, HAp based composite material is synthesized from biowaste in a cost effective way. Fish bone derived HAp is combined with a cellulose nanofibre (CNF) and curcumin (Cur) as a composite for enhanced thermal, biological and mechanical properties. The HAp/CNF/Cur composite is prepared with different concentrations of CNF (1–3.wt%) and Cur (0.5–1.5 wt%), respectively. Different characterization techniques like Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and thermal gravimetric (TGA) analysis were engaged to assess the functional groups, phase composition, morphology, elemental composition and thermal analysis of the composite. The mechanical strength of the composite is examined using Vickers micro-hardness test. In addition, antibacterial nature of the composite is evaluated against negative and positive bacteria. The viability of human osteosarcoma MG 63 cells over the composite is studied at different concentrations of 1, 3, 7, 10 and 15 µg for 24 h of incubation. Overall, the present investigation shows that the as-synthesized HAp/CNF/Cur composite with enhanced thermal, mechanical and biological properties will be a prospective aspirant for tissue engineering therapeutics.


2017 ◽  
Vol 50 ◽  
pp. 18-31 ◽  
Author(s):  
Rudzani Sigwadi ◽  
Simon Dhlamini ◽  
Touhami Mokrani ◽  
Patrick Nonjola

The paper presents the synthesis and investigation of zirconium oxide (ZrO2) nanoparticles that were synthesised by precipitation method with the effects of the temperatures of reaction on the particles size, morphology, crystallite sizes and stability at high temperature. The reaction temperature effect on the particle size, morphology, crystallite sizes and stabilized a higher temperature (tetragonal and cubic) phases was studied. Thermal decomposition, band structure and functional groups were analyzed by Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Thermo-gravimetric analysis (TGA) and Fourier transform infrared (FT-IR). The crystal structure was determined using X-ray diffraction. The morphology and the particle size were studied using (SEM) and (TEM). The shaped particles were confirmed through the SEM analysis. The transmission electron microscopic analysis confirmed the formation of the nanoparticles with the particle size. The FT-IR spectra showed the strong presence of ZrO2 nanoparticles.


2009 ◽  
Vol 24 (1) ◽  
pp. 245-252 ◽  
Author(s):  
Robert Ianoş

Single-phase nanocrystalline 4CaO·Al2O3·Fe2O3 powders were prepared directly from the combustion reaction using a new cost-effective, time-saving, and environmentally friendly version of solution combustion synthesis. Instead of a single fuel, a fuel mixture of urea and β-alanine was used. It was shown by x-ray diffraction, energy-dispersive x-ray analysis, thermogravimetric analysis, and optical microscopy that this new version of the solution combustion synthesis allows the maximization of the exothermic effect associated with the combustion reaction. On the other hand, it was shown that the traditional version of combustion synthesis involving the use of a single fuel, such as urea or β-alanine, does not ensure the formation of Ca4Al2Fe2O10 unless subsequent thermal treatments are applied. It was suggested that the occurrence of combustion reactions cannot be regarded only in terms of adiabatic temperature, as the kinetic aspects overrule the thermodynamic ones.


2015 ◽  
Vol 50 (1) ◽  
pp. 21-28 ◽  
Author(s):  
F Hassan ◽  
MS Miran ◽  
HA Simol ◽  
MAB H Susan ◽  
MYA Mollah

ZnO nanoparticles (NPs) with size less than 100 nm were successfully prepared by a hybrid electrochemical-thermal method using metallic zinc and NaHCO3 without the use of any zinc salt, template or surfactant. The NPs were characterized by Fourier transform infra-red (FT-IR) spectroscopy, UV-visible spectroscopy, photoluminescence spectroscopy (PL), thermo-gravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. UV-visible spectral analysis indicated that the particle size increased with increasing calcination temperature. The band gap (3.91-3.83 eV) was higher for synthesized ZnO NPs than their bulk counterparts (3.37 eV). The FT-IR spectra at different calcination temperatures showed the characteristic band for ZnO at 450 cm-1 to be prominent with increasing temperature due to the conversion of precursor into ZnO. The wurtzite hexagonal phase was confirmed by XRD analyses for ZnO NPs calcined at 700oC. The green photoluminescent emission from ZnO NPs at different calcination temperatures is considered to be originated from the oxygen vacancy or interstitial related defects in ZnO. SEM images clearly showed that the NPs are granular and of almost uniform size when calcined at higher temperatures. EDX spectra further confirmed the elemental composition and purity of ZnO obtained on calcination at 700oC. The NPs are well dispersed near or above calcination temperature of 700oC.Bangladesh J. Sci. Ind. Res. 50(1), 21-28, 2015


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1096
Author(s):  
Ligang Luo ◽  
Xiao Han ◽  
Qin Zeng

A series of Ni-Fe/SBA-15 catalysts was prepared and tested for the catalytic hydrogenation of levulinic acid to γ-valerolactone, adopting methanol as the only hydrogen donor, and investigating the synergism between Fe and Ni, both supported on SBA-15, towards this reaction. The characterization of the synthesized catalysts was carried out by XRD (X-ray powder diffraction), TEM (transmission electron microscopy), H2-TPD (hydrogen temperature-programmed desorption), XPS (X-ray photoelectron spectroscopy), and in situ FT-IR (Fourier transform–infrared spectroscopy) techniques. H2-TPD and XPS results have shown that electron transfer occurs from Fe to Ni, which is helpful both for the activation of the C=O bond and for the dissociative activation of H2 molecules, also in agreement with the results of the in situ FT-IR spectroscopy. The effect of temperature and reaction time on γ-valerolactone production was also investigated, identifying the best reaction conditions at 200 °C and 180 min, allowing for the complete conversion of levulinic acid and the complete selectivity to γ-valerolactone. Moreover, methanol was identified as an efficient hydrogen donor, if used in combination with the Ni-Fe/SBA-15 catalyst. The obtained results are promising, especially if compared with those obtained with the traditional and more expensive molecular hydrogen and noble-based catalysts.


2019 ◽  
Vol 11 (11) ◽  
pp. 1064-1070 ◽  
Author(s):  
Nkosinathi G. Dlamini ◽  
Albertus K. Basson ◽  
V. S. R. Rajasekhar Pullabhotla

Bioflocculant from Alcaligenis faecalis HCB2 was used in the eco-friendly synthesis of the copper nanoparticles. Nanoparticles were characterized using a scanning electron microscope (SEM), transmission electron microscopy (TEM), UV-visible spectroscopy, thermo gravimetric analysis (TGA) and Fourier Transform Infrared Spectroscopy (FT-IR). The transmission electron microscopy images showed close to spherical shapes with an average particle size of ∼53 nm. Energy-dispersive X-ray spectroscopy analysis confirmed the presence of the Cu nanopartilces and also the other elements such as O, C, P, Ca, Cl, Na, K, Mg, and S originated from the bioflocculant. FT-IR results showed the presence of the –OH and –NH2 groups, aliphatic bonds, amide and Cu–O bonds. Powder X-ray diffraction peaks confirmed the presence of (111) and (220) planes of fcc structure at 2 of 33° and 47° respectively with no other impurity peaks.


e-Polymers ◽  
2016 ◽  
Vol 16 (1) ◽  
pp. 33-39 ◽  
Author(s):  
Samira Moqadam ◽  
Mehdi Salami-Kalajahi

AbstractPolysulfide polymers usually are prepared by the reaction of different dihalide compounds with disodium polysulfides. In this field, dihalides are expensive and produced from halogenation of organic compounds by different methods with harsh conditions. To overcome this problem, in this work, sunflower oil as polyunsaturated oil was used as precursor to produce polyhalide compound. In this field, double bonds of oil were applied as functional groups to halogenate the sunflower via benzoyl peroxide-catalyzed reaction with hydrochloric acid. Also, Na2S3 was synthesized via the reaction between sulfur and sodium hydroxide. Then, halogenated oil was reacted with Na2S3 to produce sunflower oil-based polysulfide polymer. Fourier transform infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance (1H NMR) were used to characterize the structure of sunflower oil and synthesized polysulfide polymer. The content of halogenation was also obtained via energy-dispersive X-ray spectroscopy (EDX). Thermal stability of synthesized polymer was determined by means of thermal gravimetric analysis (TGA) and glass transition temperature was investigated by differential scanning calorimetry (DSC).


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2570
Author(s):  
Oana Cadar ◽  
Marin Senila ◽  
Maria-Alexandra Hoaghia ◽  
Daniela Scurtu ◽  
Ion Miu ◽  
...  

This study presents the effect of thermal treatment (450, 500, 600, 750, and 800 °C) on a Romanian clinoptilolite-rich natural zeolite, along with the interaction of raw and thermally treated zeolites with simulated gastric fluid (SGF, pH = 1.20) at different zeolite to SGF ratios and exposure times. The zeolites were characterized using gravimetric analysis, X-ray fluorescence, powder X-ray diffraction (pXRD), and Fourier transform infrared (FT-IR) spectroscopy. The chemical composition of the zeolite subjected to thermal treatment did not change significantly with the increase of temperature. Structural changes were not detectable by pXRD and FT-IR analyses in the zeolites thermally treated up to 500 °C, while above 600 °C a gradual structural breakdown of zeolite was noticed. At high temperatures, the broad, low-intensity peaks in pXRD patterns indicated the partial amorphization of the crystalline structure. The pXRD and FT-IR analyses showed that the crystalline structure of zeolites remains unaffected after their exposure to SGF. The results revealed that the amounts of Fe, Na, Mg, K, Ca, Al, and Si released depends mainly on the zeolite to SGF ratio, and to a lower extent on the thermal treatment temperature, while the exposure time of 1 to 7 days does not have a significant impact on the elements released in SGF.


2015 ◽  
Vol 1087 ◽  
pp. 30-34 ◽  
Author(s):  
KANAGESWARY SOCKALINGAM ◽  
Mohd Azha Yahya ◽  
Hasan Zuhudi Abdullah

Hydroxyapatite (HAp), classified as bioceramic materials is the major mineral constituent of vertebrate bones and teeth. In this study, the effect of temperature on isolation and characterization of HAp from tilapia fish scales have been investigated. Scales were subjected to heat treatment at different temperatures (800°C and 1000°C) and microstructure of both raw and calcined scales were observed under Scanning Electron Microscopy (SEM). Thermo Gravimetric Analysis (TGA) and Energy Dispersive X-Ray Spectroscopy (EDX) results have revealed the best calcination temperature of tilapia scales to be 800°C due to the calculated calcium to phosphorous weight ratio (Ca/P). The Ca/P ratio for scales treated at 800°C and 1000°C were 1.598 and 1.939 respectively. The phase purity and crystallinity of produced HAp was further confirmed by X-Ray Diffraction (XRD) analysis. Based on the study, it can be concluded that tilapia fish scale is a good natural source of HAp with 800°C as the optimum calcination temperature in HAp production.


2016 ◽  
Vol 1133 ◽  
pp. 644-648 ◽  
Author(s):  
Mohamad Azuwa Mohamed ◽  
Wan Norharyati Wan Salleh ◽  
Juhana Jaafar ◽  
Ahmad Fauzi Ismail

Cellulose microfibers (CMF) were produced by utilizing recycled newspaper paper (RNP) as starting material. This approach is considered as green since recycling newspaper leads to the environment preservation and also cost-effective. The effect on the structural properties of cellulose produced at different stage of pretreatment were investigated by using Fourier transform infrared (FTIR), Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Thermal gravimetric analysis (TGA). The FTIR and SEM demonstrate that the hemicellulose and lignin was successfully removed from the structure of the CMF. XRD and TGA results revealed that the different step of pretreatment was increased the crystallinity and thermal stability of CMF increased gradually. The improvement in CMF crystallinity has improved its thermal properties which is important in the field of reinforcement material.


Sign in / Sign up

Export Citation Format

Share Document