scholarly journals Preparation, characterization and application of the nanocomposite PCL-PEG-PCL / Bentonite-TBHSA to the removal of methylene blue (MB) dye: Adsorption, Kinetics, and Isotherm studies

Author(s):  
Zohra Draoua ◽  
Amine Harrane ◽  
Mehdi Adjdir

Abstract This study focuses on the synthesis, characterization, and application of amphiphilic PCL-PEG-PCL/Bentonite-TBHSA (A2). The prepared of A2 nanocomposite was prepared from Algerian Bentonite modified by the intercalation of tetrabutylammonium hydrogen sulfate (TBHSA) (A1), were characterized by different techniques including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction(XRD), (TEM),(DSC) and thermogravimetric analysis (TGA ). The removal efficiency of of methylene blue, from aqueous solutions. The effects of the initial pH of a solution, contact time, and nanocomposite mass on the adsorption efficiency were investigated. Pseudo-first/second-order isotherms were applied to determine the efficiency of nanocomposite solid. The experimental data fitted well with the pseudo-second-order model for MB dye adsorption. The mass of nanocomposite increased, the adsorption capacity of dye increases to reach an optimal value at 0.13 g of adsorbent in pH = 6.8. The Langmuir isotherm exhibited the best fit, with an adsorption capacity equal to 600 mg/g .

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Jhonatan R. Guarín ◽  
Juan Carlos Moreno-Pirajan ◽  
Liliana Giraldo

Currently, there is a great pollution of water by the dyes; due to this, several studies have been carried out to remove these compounds. However, the total elimination of these pollutants from the aquatic effluents has represented a great challenge for the scientific community, for which it is necessary to carry out investigations that allow the purification of water. In this work, we studied the bioadsorption of methylene blue on the surface of the biomass obtained from the algae D. antarctica. This material was characterized by SEM and FTIR. To the data obtained in the biosorption experiments, different models of biosorption and kinetics were applied, finding that the best fit to the obtained data is given by applying the pseudo-second-order models and the Toth model, respectively. It was also determined that the maximum adsorption capacity of MB on the surface of the biomass is 702.9 mg/g, which shows that this material has great properties as a bioadsorbent.


2021 ◽  
Vol 10 (1) ◽  
pp. 59-66
Author(s):  
Son Le Lam ◽  
Phu Nguyen Vinh ◽  
Hieu Le Trung ◽  
Tan Le Thua ◽  
Nhan Dang Thi Thanh ◽  
...  

Glucomannan/graphene oxide (GM/GO) hydrogel was synthesized by using calcium hydroxide as the crosslinker. The synthesized material was characterized by using IR, XRD, SEM, EDX and RAMAN technology. The composite hydrogel was used for removal of organic dyes from aqueous solution. The results showed that the GM/GO hydrogel had a porous structure and a high adsorption capacity toward methylene blue (MB). The pseudo-second-order kinetic model could fit the rate equation of MB adsorption onto the GM/GO hydrogel. The adsorption of MB onto GM/GO hydrogel was a spontaneous process. In addition, the equilibrium adsorption isotherm data indicated that equilibrium data were fitted to the Langmuir isotherm and the maximum dye adsorption capacity was 198,69 mg.g-1. Moreover, the hydrogel was stable and easily recovered and adsorption capacity was around 97% of the initial saturation adsorption capacity after being used five times.


2015 ◽  
Vol 1125 ◽  
pp. 281-285
Author(s):  
Siti Aishah Muhmed ◽  
Mohd Ghazali Mohd Nawawi

Crosslinked Sago Starch (CSS) was prepared by crosslinking native starch with Sodium Trimetaphosphate. As a biodegradable adsorbent, CSS was used to remove methylene blue (MB) from the aqueous solution based on its characterization, including the granule morphology, crystalline nature and molecular structure. The adsorption capacity of CSS was evaluated as a function of pH, adsorbent dosage, initial concentration and time. It was favorable for adsorption under condition of neutral and at high initial concentration. The adsorption capacity trend was decreased with increasing the adsorbent dosage. The equilibrium isotherms were conducted using Langmuir, Freundlich and Tempkin model. It has been demonstrated that the better agreement was Langmuir isotherm with correlation coefficient of 0.99, equilibrium adsorption capacity of 3.75 mg g-1, chi-square test, χ2 of 0.03% and corresponding contact time of 4 hours. The pseudo-first-order, pseudo-second-order and intra-particle diffusion were used to fit adsorption data in the kinetic studies. And results showed that the adsorption kinetics was more accurately described by the pseudo-second-order model with correlation coefficient, R2 of 0.99 and standard deviation, SSE of 0.12%. The obtained results suggest that CSS could be promising candidates as an adsorbent for dye removal.


2020 ◽  
Vol 10 (4) ◽  
pp. 5772-5779

Water pollution is the most significant issue due to rapid growing industrial development especially textile dye industry. Therefore, the adsorption process experiment was conducted to determine the removal ability of the adsorbent chosen. The removal rate and adsorption capacity of Phenol red and Cresol were analyzed by using eggshell adsorbent in the adsorption process. The experiment was conducted with parameters of initial concentration, dosage, pH and contact time. Results indicated that the removal rate achieved more than 90% and the adsorption capacity exceeded more than 5 mg/g. The functional group before adsorption process eggshell adsorbent and after adsorption process eggshell adsorbent was analyzed by using FTIR (Fourier Transform Infrared Spectroscopy). The study of adsorption isotherm and kinetics model was carried out to identify the efficiency of the eggshell adsorbent reacting with the dye solution. The adsorption isotherm that applied in this research was Langmuir isotherm, Jovanovic isotherm and Freundlich isotherm. Moreover, Pseudo-first-order and Pseudo-second-order chosen were conducted to determine the kinetic studies. In short, eggshell adsorbent is highly effective on dye removal through adsorption capacity. The functional group of the eggshell adsorbent was found such as alcohols, phenol, alkanes, carbonyls, ester, saturated aliphatic, aldehydes, aromatics, 2°amines and phosphorus. For kinetics study, Freundlich isotherm was analyzed as the best fit isotherm model as it achieved the highest R2 value which is closed to 1 and Pseudo-second-order was analyzed as the best fit kinetic model in this experiment. Therefore, eggshell adsorbent is highly effective in dye removal.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Nady A. Fathy ◽  
Ola I. El-Shafey ◽  
Laila B. Khalil

The effectiveness of alkali-acid modification in enhancement the adsorption capacity of rice straw (RS) for removing a basic dye was studied. The obtained adsorbents were characterized by slurry pH, pHPZC, iodine number, methylene blue number, FTIR, and SEM analyses. Adsorption of methylene blue (MB) was described by the Langmuir, Freundlich, Tempkin, and Redlich-Peterson isotherm models. Effects of contact time, initial concentration of MB dye, pH of solution, adsorbent dose, salt concentration of NaCl, and desorbing agents on the removal of MB were reported. Kinetic studies were analyzed using the pseudo-first-order, pseudo-second-order, and the intraparticle diffusion models and were found to follow closely the pseudo-second-order model. Equilibrium data were best represented by the Langmuir and Redlich-Peterson isotherms. The adsorption capacities were varied between 32.6 and 131.5 mg/g for untreated and treated RS samples with NaOH-1M citric acid (ARS-1C), respectively. Adsorption behavior of the ARS-1C sample was experimented in a binary mixture containing methylene blue (basic) and reactive blue 19 (acidic) dyes which showed its ability to remove MB higher than RB19. Overall, the results indicate that the alkali-acid treatment proved to be potential modification for producing effective low-cost adsorbents for the removal of the basic dyes from wastewater.


Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1137
Author(s):  
Roberto Machado Garcia ◽  
Robert Carleer ◽  
Maria Arada Pérez ◽  
Jeamichel Puente Torres ◽  
Ying Gu ◽  
...  

Fe-TiO2/AC and Co-TiO2/AC composites were prepared from activated carbon (AC) derived from residues of peanut hulls and TiO2 photocatalyst, electrochemically prepared from titanium scrap, and doped with Fe and Co, respectively. The adsorption capacity and photocatalytic activity of the Fe-TiO2/AC and Co-TiO2/AC composites were studied for removing and degrading Cibacron Yellow F-4G (CYF-4G) from wastewater. Doped ACs were characterized by thermogravimetry (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), a new X-ray absorption technique (XRA), and elemental analysis (EA). Interesting relationships were found between SEM, XRA, and TGA data and the doped amount of catalyst on ACs. Optimal dye adsorption was found at a pH of 2.0. The CYF-4G adsorption kinetics are followed according to the pseudo-second order model. The experimental data revealed that the Langmuir model fits better than the Freundlich and Temkin models. A decrease in adsorption capacity was observed when the catalyst dope percentage increased. A removal and degradation efficiency of the dye close to 100% was achieved around 120 min. A synergistic adsorption and photocatalytic degradation effect of the Fe-TiO2/AC and Co-TiO2/AC composites could be observed when adsorption experiments were conducted under simulated visible radiation.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hien Thi Dinh ◽  
Nam Trung Tran ◽  
Dai Xuan Trinh

In this work, the adsorptive removal of methylene blue and methyl orange by UiO-66-NO2 nanoparticles was studied. The influence of pH on the adsorption capacity was assessed. The kinetics of the adsorption process were investigated and compared with pseudo-first-order, pseudo-second-order, Elovich, and intraparticle models. The kinetics of the adsorption fits moderately with the pseudo-first-order, but perfectly fits with pseudo-second-order models, and has a very good fit with the Elovich and intraparticle models. The adsorption isotherms were measured and compared with the Langmuir and Freundlich models. The adsorption capacity of methyl orange (MO) on UiO-66-NO2 nanoparticles (142.9 mg/g) was over three times higher than that of methylene blue (MB) on the nanoparticles (41.7 mg/g). The discrepancy between these capacities was attributed to the presence of the -NO2 functional group, which caused a strong negative mesomeric effect in the metal-organic framework structure.


2020 ◽  
Vol 42 (1) ◽  
pp. 10-18
Author(s):  
Tae Hyun Gil ◽  
Wang Heon Lee ◽  
Johng-Hwa Ahn

Objective : Present research discussed the utilization of pumpkin-seed residue (PSR) after oil extraction with methanol as an adsorbent for methylene blue (MB) removal from aqueous solution.Method : The experiment was carried out to evaluate the influence of PSR adsorbent dose (7.5-25 g/L), initial MB concentration (25-200 mg/L), contact time (30-120 min), pH (3-11), and temperature (293-333 K). Adsorption isotherms were modeled with the Langmuir, Freundlich, and Temkin isotherms. The kinetic data were analyzed using pseudo-first-order and pseudo-second-order models.Results and Discussion : A pseudo-equilibrium state was reached within 30 min of contact time at low initial MB concentration (25-50 mg/L) and 90 min at high concentration (100-200 mg/L). Increasing pH and temperature caused an increase in adsorption capacity. Thermodynamic studies demonstrated that the adsorption process was spontaneous with Gibb’s free-energy values ranging between -15.78 to -13.87 kJ/mol and endothermic with an enthalpy value of 0.011 kJ/mol. The adsorption equilibrium data fitted well with the Freundlich adsorption isotherm. The maximum monolayer adsorption capacity was 20.33 mg/g. Tempkin isotherm model clarified that the heat of sorption process was 6.28 J/mol. The adsorption kinetics was found to follow the pseudo-second order kinetics model and its rate constant was 0.002-0.278 g/mg・min.Conclusions : Findings of the present study indicated that the PSR can be successfully used for removal of MB from aqueous solution. Therefore, the PSR was shown to have good potential as a biosorbent for MB removal.


2021 ◽  
Author(s):  
BENSEDIRA Abderrahim ◽  
HADDAOUI Nacerddine ◽  
DOUFNOUNE Rachida ◽  
MEZIANE Ouahiba ◽  
N. S. Labidi

Abstract Conducting Polymeric composites have attracted great attention over the last years because of their potential uses in chemical, electronic and optical devices, and as catalysts as well as in adsorption processes. Chemical synthesis of polyaniline (PANI) and polyaniline-SiO2 composite and their adsorptive performance were reported in the present work. These materials were prepared and evaluated for their methylene blue (MB) dye adsorption characteristics from aqueous solution. Adsorption equilibrium kinetic and thermodynamic experiments of MB onto PANI and PANI/SiO2 were studied. The effects of initial dye concentration, contact time and temperature on the adsorption capacity of PANI/SiO2 for MB have been investigated. The pseudo-first order and pseudo-second order kinetic models were used to describe the kinetic data. It was found that adsorption kinetics followed the pseudo-second order at all of the studied temperatures. The Langmuir, Freundlich and Dubinin Raduschkevich adsorption models were used for the mathematical description and the fit obtained using the Dubinin Raduschkevich isotherm has a medium R2 value.


2018 ◽  
Vol 16 (1) ◽  
pp. 36 ◽  
Author(s):  
Idha Yulia Ikhsani ◽  
Sri Juari Santosa ◽  
Bambang Rusdiarso

Adsorption of disperse dyes from wastewater onto Ni-Zn LHS (layered hydroxide salts) and Mg-Al LDH (layered double hydroxides) has been compared in this study. Effects of initial pH solution, contact time and initial dye concentration were investigated. The ability of the adsorbent to be reused was also studied. The results showed that acidic condition was favorable for the adsorption of each dyes onto both adsorbent. The adsorption kinetics was studied using pseudo-first-order, pseudo-second-order and Santosa’s kinetics models. The experimental data fits well with the pseudo-second order kinetic model. The equilibrium adsorption data were analyzed using Langmuir and Freundlich isotherm models. The results showed that adsorption of navy blue onto both adsorbent followed Freundlich isotherm adsorption, while yellow F3G followed Langmuir isotherm adsorption. In the application for the adsorption the wastewater containing dyes, Ni-Zn LHS has a better adsorption capacity of 52.33 mg/g than that of Mg-Al LDH that 30.54 mg/g. Calcination of the adsorbent which has already been used increased the adsorption capacity of Mg-Al LDH to 84.75 mg/g, but decreased the adsorption capacity of the Ni-Zn LHS to 42.65 mg/g.


Sign in / Sign up

Export Citation Format

Share Document