scholarly journals Elevation of Systemic Defense in Potato Against Alternaria Solani by a Consortium of Compatible Trichoderma Spp.

Author(s):  
Sumit Kumar ◽  
Ram Chandra ◽  
Lopamudra Behera ◽  
Chetan Keswani ◽  
Estibaliz Sansinenea

Abstract The crop loss due to phytopathogens is a serious problem affecting the entire world. To avoid economic losses due to phytopathogens synthetic chemicals have been used for years generating serious concerns about the human health and environment. Today the use of beneficial microorganisms to treat phytopathogens is gaining attention. In this way, Trichoderma spp. has been used for combating plant diseases and inducing defense response in plants. With this idea in mind, in this study we evaluate the effectiveness of Trichoderma viride and T. harzianum as single as well as in combination for elevating the defense response and growth promotion activities in potato challenged with Alternaria solani. The mycelial inhibition of A. solani by T. viride and T. harzianum was recorded and compared with control. Scanning electron microscope (SEM) observation revealed the collapsed hyphae and sunken conidia of A. solani due to antagonistic activity of T. viride and T. harzianum. Induction of defense enzymes including TPC, PAL, SOD and total protein content was increased in Trichoderma spp, treated plants as compared with pathogen inoculated plants. HPLC analysis demonstrated higher production in phenolic compounds during combined application of Trichoderma spp. treated potato plants in the response of A. solani infection. Moreover, treatment with Trichoderma spp. consortium showed significant growth promotion in potato plants comparing with the control.

Author(s):  
H.V. Parmar ◽  
N.M. Gohel

Background: Chickpea wilt complex caused by several soil-borne pathogens is the major yield-reducing malady worldwide. Biological control is one of the best, low-cost and ecologically sustainable method for managing plant diseases caused by soil-borne pathogens. Methods: In this present investigation Panchagavya and Trichoderma spp. were evaluated by following poisoned food technique and dual culture technique against wilt complex causing pathogens i.e. Fusarium oxysporum f. sp. ciceri, Fusarium solani and Macrophomina phaseolina. Result: Among the different isolates of Trichoderma spp. evaluated, Trichoderma viride (AAU isolate) was highly antagonistic to F. oxysporum f. sp. ciceri (52.78%) and F. solani (65.37%) whereas, Trichoderma asperellum (AAU isolate) was highly antagonistic to M. phaseolina (65.93%). Panchagavya at the highest concentration (50%) showed significantly higher efficacy (80.74, 66.62 and 49.67%) in inhibiting the mycelial growth of all three pathogens and at the lowest concentration it was moderately effective.


2015 ◽  
Vol 3 (1) ◽  
pp. 106-110
Author(s):  
P. Rajeswari

In an attempt to develop biocontrol system for management of Fusarium wilt in groundnut, Trichoderma viride, Trichoderma harzianum,and Pseudomonas fluorescens were evaluated for their antagonistic activity against Fusarium oxysporum in vitro. .Fusarium wilt diseasescaused by the fungus Fusarium oxysporum lead to significant yield losses of crops. Experiments were conducted on the effect of culture filtratesof T.viride (1%), T. harzianum (1.5%), and P. fluorescens (2%) on the in vitro inhibition of cellulolytic enzymes of Fusarium oxysporum. Theactivity of 1,4 endoglucanases, 1,4exoglucanase Cellobiase produced by Fusariumoxysporum was higher, when compared to control.Maximum inhibition of above Cellulolytic enzymes (1, 4 endoglucanases, 1,4exoglucanase, Cellobiase) was shown by T. viride treatment wasfollowed by T. harzianum and P. fluorescens. Of all the treatments, T. viride treatment showed higher rate of inhibition of Cellulolytic enzymesof Fusarium oxysporum followed by that of T. harzianum and P. fluorescens.This present study indicates that culture filtrate of T.viride(1%)is the best biocontrol agent in the inhibition of Fusarium oxysporum causing Fusarium wilt of Arachis hypogaea .LDOI: http://dx.doi.org/10.3126/ijasbt.v3i1.12138    Int J Appl Sci Biotechnol, Vol. 3(1): 106-110 


Author(s):  
Wilson Ceiro-Catasú ◽  
Yusel Vega-González ◽  
María Taco-Sánchez ◽  
Ramiro Gaibor-Fernández ◽  
Oandis Sosa-Sánchez

Tobacco production is a key line in the Cuban economy and generates the largest income in the agricultural sector. Within phytopathogens affecting this plant, Fusarium spp., constitutes a pest of interest, due to vascular involvements that cause deterioration of the commercial value of the leaf. Therefore, the research was carried out with the aim of determining the antagonistic activity in vitro of native strains of Trichoderma harzianum and T. viride on isolates of Fusarium oxysporum and F. phyllophylum, from Nicotiana tabacum L. in Granma province, Cuba. The work was carried out at the Laboratory of Agricultural Microbiology, University of Granma. Half dextrose potato agar was prepared to establish the dual crops of Trichoderma spp. vs. Fusarium spp. Once the treatments were established and the incubation time had elapsed, the percentage inhibition of mycelial growth, antagonistic capacity and mycoparasitic activity was determined. A fully randomized design with four replicas per treatment was used and a two factorial ANOVA and Tukey test (p≤0.05) were used for statistical processing. It was shown that the strains of Trichoderma spp., recorded intermediate values of phytopathogenic inhibition, the competitiveness of the antagonist was mostly located in class two of the Bell scale and it was found that penetration, winding, vacuolization, deformation and granulation constitute the main forms of mycoparasitism. Which points to this biocontrol method as an alternative to consider for the management of Fusarium spp., in tobacco agroecosystems.


2020 ◽  
Vol 21 (6) ◽  
pp. 429-443
Author(s):  
Seenichamy Rathinam Prabhukarthikeyan ◽  
Chidambaranathan Parameswaran ◽  
Umapathy Keerthana ◽  
Basavaraj Teli ◽  
Prasanth Tej Kumar Jagannadham ◽  
...  

Plant-microbe interactions can be either beneficial or harmful depending on the nature of the interaction. Multifaceted benefits of plant-associated microbes in crops are well documented. Specifically, the management of plant diseases using beneficial microbes is considered to be eco-friendly and the best alternative for sustainable agriculture. Diseases caused by various phytopathogens are responsible for a significant reduction in crop yield and cause substantial economic losses globally. In an ecosystem, there is always an equally daunting challenge for the establishment of disease and development of resistance by pathogens and plants, respectively. In particular, comprehending the complete view of the complex biological systems of plant-pathogen interactions, co-evolution and plant growth promotions (PGP) at both genetic and molecular levels requires novel approaches to decipher the function of genes involved in their interaction. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 (CRISPR-associated protein 9) is a fast, emerging, precise, ecofriendly and efficient tool to address the challenges in agriculture and decipher plant-microbe interaction in crops. Nowadays, the CRISPR/Cas9 approach is receiving major attention in the field of functional genomics and crop improvement. Consequently, the present review updates the prevailing knowledge in the deployment of CRISPR/Cas9 techniques to understand plant-microbe interactions, genes edited for the development of fungal, bacterial and viral disease resistance, to elucidate the nodulation processes, plant growth promotion, and future implications in agriculture. Further, CRISPR/Cas9 would be a new tool for the management of plant diseases and increasing productivity for climate resilience farming.


Author(s):  
Lijuan Li ◽  
Xibai Zeng ◽  
Jie-Yin Chen ◽  
Jian Tian ◽  
Jinqun Huang ◽  
...  

Trichoderma spp. are versatile probiotic fungi that are known to promote plant growth and disease resistance under biotic stress, abiotic stress, or both. They are often used to prevent plant diseases caused by pathogens and act as bio-fertilizers and are used in mycoremediation. In our previous study, T. asperellum strain SM-12F1 was isolated from soils contaminated with arsenic (As), adjacent to a realgar mine. SM-12F1 promoted plant growth and was useful for biocontrol and bioremediation. However, the genomic sequence of this strain was not characterized. This study aimed to generate high-quality genome resources for T. asperellum SM-12F1, and to determine the genomic basis of mechanisms behind plant growth promotion, biocontrol, and bioremediation of As in soil. Genome data of this fungus will provide perspectives on the molecular basis underlying biocontrol activity and mycoremediation.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2007 ◽  
Author(s):  
Sandeep Chakraborty ◽  
Rafael Nascimento ◽  
Paulo A. Zaini ◽  
Hossein Gouran ◽  
Basuthkar J. Rao ◽  
...  

Background.Xylella fastidiosa, the causative agent of various plant diseases including Pierce’s disease in the US, and Citrus Variegated Chlorosis in Brazil, remains a continual source of concern and economic losses, especially since almost all commercial varieties are sensitive to this Gammaproteobacteria. Differential expression of proteins in infected tissue is an established methodology to identify key elements involved in plant defense pathways.Methods. In the current work, we developed a methodology named CHURNER that emphasizes relevant protein functions from proteomic data, based on identification of proteins with similar structures that do not necessarily have sequence homology. Such clustering emphasizes protein functions which have multiple copies that are up/down-regulated, and highlights similar proteins which are differentially regulated. As a working example we present proteomic data enumerating differentially expressed proteins in xylem sap from grapevines that were infected withX. fastidiosa.Results. Analysis of this data by CHURNER highlighted pathogenesis related PR-1 proteins, reinforcing this as the foremost protein function in xylem sap involved in the grapevine defense response toX. fastidiosa.β-1, 3-glucanase, which has both anti-microbial and anti-fungal activities, is also up-regulated. Simultaneously, chitinases are found to be both up and down-regulated by CHURNER, and thus the net gain of this protein function loses its significance in the defense response.Discussion. We demonstrate how structural data can be incorporated in the pipeline of proteomic data analysis prior to making inferences on the importance of individual proteins to plant defense mechanisms. We expect CHURNER to be applicable to any proteomic data set.


2020 ◽  
Vol 13 (2) ◽  
pp. 54-65 ◽  
Author(s):  
M.E.A. Bendaha ◽  
H.A. Belaouni

SummaryThis study aims to develop a biocontrol agent against Fusarium oxysporum f.sp. radicis-lycopersici (FORL) in tomato. For this, a set of 23 bacterial endophytic isolates has been screened for their ability to inhibit in vitro the growth of FORL using the dual plate assay. Three isolates with the most sound antagonistic activity to FORL have been qualitatively screened for siderophore production, phosphates solubilization and indolic acetic acid (IAA) synthesis as growth promotion traits. Antagonistic values of the three candidates against FORL were respectively: 51.51 % (EB4B), 51.18 % (EB22K) and 41.40 % (EB2A). Based on 16S rRNA gene sequence analysis, the isolates EB4B and EB22K were closely related to Enterobacter ludwigii EN-119, while the strain EB2A has been assigned to Leclercia adecarboxylata NBRC 102595. The promotion of tomato growth has been assessed in vitro using the strains EB2A, EB4B and EB22K in presence of the phytopathogen FORL. The treatments with the selected isolates increased significantly the root length and dry weight. Best results were observed in isolate EB4B in terms of growth promotion in the absence of FORL, improving 326.60 % of the root length and 142.70 % of plant dry weight if compared with untreated controls. In the presence of FORL, the strain EB4B improved both root length (180.81 %) and plant dry weight (202.15 %). These results encourage further characterization of the observed beneficial effect of Enterobacter sp. EB4B for a possible use as biofertilizer and biocontrol agent against FORL.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3830
Author(s):  
Ahmad Almadhor ◽  
Hafiz Tayyab Rauf ◽  
Muhammad Ikram Ullah Lali ◽  
Robertas Damaševičius ◽  
Bader Alouffi ◽  
...  

Plant diseases can cause a considerable reduction in the quality and number of agricultural products. Guava, well known to be the tropics’ apple, is one significant fruit cultivated in tropical regions. It is attacked by 177 pathogens, including 167 fungal and others such as bacterial, algal, and nematodes. In addition, postharvest diseases may cause crucial production loss. Due to minor variations in various guava disease symptoms, an expert opinion is required for disease analysis. Improper diagnosis may cause economic losses to farmers’ improper use of pesticides. Automatic detection of diseases in plants once they emerge on the plants’ leaves and fruit is required to maintain high crop fields. In this paper, an artificial intelligence (AI) driven framework is presented to detect and classify the most common guava plant diseases. The proposed framework employs the ΔE color difference image segmentation to segregate the areas infected by the disease. Furthermore, color (RGB, HSV) histogram and textural (LBP) features are applied to extract rich, informative feature vectors. The combination of color and textural features are used to identify and attain similar outcomes compared to individual channels, while disease recognition is performed by employing advanced machine-learning classifiers (Fine KNN, Complex Tree, Boosted Tree, Bagged Tree, Cubic SVM). The proposed framework is evaluated on a high-resolution (18 MP) image dataset of guava leaves and fruit. The best recognition results were obtained by Bagged Tree classifier on a set of RGB, HSV, and LBP features (99% accuracy in recognizing four guava fruit diseases (Canker, Mummification, Dot, and Rust) against healthy fruit). The proposed framework may help the farmers to avoid possible production loss by taking early precautions.


2012 ◽  
Vol 102 (7) ◽  
pp. 652-655 ◽  
Author(s):  
K. L. Everts ◽  
L. Osborne ◽  
A. J. Gevens ◽  
S. J. Vasquez ◽  
B. K. Gugino ◽  
...  

Extension plant pathologists deliver science-based information that protects the economic value of agricultural and horticultural crops in the United States by educating growers and the general public about plant diseases. Extension plant pathologists diagnose plant diseases and disorders, provide advice, and conduct applied research on local and regional plant disease problems. During the last century, extension plant pathology programs have adjusted to demographic shifts in the U.S. population and to changes in program funding. Extension programs are now more collaborative and more specialized in response to a highly educated clientele. Changes in federal and state budgets and policies have also reduced funding and shifted the source of funding of extension plant pathologists from formula funds towards specialized competitive grants. These competitive grants often favor national over local and regional plant disease issues and typically require a long lead time to secure funding. These changes coupled with a reduction in personnel pose a threat to extension plant pathology programs. Increasing demand for high-quality, unbiased information and the continued reduction in local, state, and federal funds is unsustainable and, if not abated, will lead to a delay in response to emerging diseases, reduce crop yields, increase economic losses, and place U.S. agriculture at a global competitive disadvantage. In this letter, we outline four recommendations to strengthen the role and resources of extension plant pathologists as they guide our nation's food, feed, fuel, fiber, and ornamental producers into an era of increasing technological complexity and global competitiveness.


Sign in / Sign up

Export Citation Format

Share Document