Comparison of Slope Mass Ratings Classification Systems: A Review

Author(s):  
JIBRAN QADRI ◽  
M Masroor Alam ◽  
Md Rehan Sadique

Abstract Engineering rock mass classifications are vital for empirical approach to evaluate and predict engineering behavior of a rock mass. Now well established empirical relations between behavior of the rock mass and the rock mass properties with regard to specific engineering applications have become an important tool for resolving many geo-engineering issues related to mega engineering projects. Engineering classifications of Rock Masses have been applied in tunneling and underground mining with great success for many years. Some rock mass classification systems developed originally for underground, excavations were also modified and adopted for many different applications including slope stability applications. The rocky slopes in general as well as along road and rail tracks are important locales for slope analysis and stabilization. In this study five classification systems are thoroughly studied for rock stability assessment and compared on the basis of reports of various research paper published so far. The methods are Slope Mass Rating and it’s off shoots, such as Continuous Slope Mass Rating, Chinese Slope Mass Rating, Graphical Slope Mass Rating and Landslide Hazard Evaluation Factor. We have tried to work which of these method can best predict slope failure as a normal process of mass wasting and mass movement as well as triggering mechanism such as pore water pressure increase, sudden down pour, earthquakes etc. So as to work out structurally controlled failure mechanism to find suitable ways for safe rock slope cuts for road networks in hilly and mountains terrain.

Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 73
Author(s):  
Panagiotis Sitarenios ◽  
Francesca Casini

This paper presents a three-dimensional slope stability limit equilibrium solution for translational planar failure modes. The proposed solution uses Bishop’s average skeleton stress combined with the Mohr–Coulomb failure criterion to describe soil strength evolution under unsaturated conditions while its formulation ensures a natural and smooth transition from the unsaturated to the saturated regime and vice versa. The proposed analytical solution is evaluated by comparing its predictions with the results of the Ruedlingen slope failure experiment. The comparison suggests that, despite its relative simplicity, the analytical solution can capture the experimentally observed behaviour well and highlights the importance of considering lateral resistance together with a realistic interplay between mechanical parameters (cohesion) and hydraulic (pore water pressure) conditions.


2015 ◽  
Vol 744-746 ◽  
pp. 690-694
Author(s):  
Muhammad Rehan Hakro ◽  
Indra Sati Hamonangan Harahap

Rainfall-induced landslides occur in many parts of the world and causing a lot of the damages. For effective prediction of rainfall-induced landslides the comprehensive understanding of the failure process is necessary. Under different soil and hydrological conditions experiments were conducted to investigate and clarify the mechanism of slope failure. The failure in model slope was induced by sprinkling the rainfall on slope composed of sandy soil in small flume. Series of tests were conducted in small scale flume to better understand the failure process in sandy slopes. The moisture content was measured with advanced Imko TDR (Time Domain Reflectrometry) moisture sensors in addition to measurements of pore pressure with piezometers. The moisture content increase rapidly to reach the maximum possible water content in case of higher intensity of rainfall, and higher intensity of the rainfall causes higher erosion as compared to smaller intensity of the rainfall. The controlling factor for rainfall-induced flowslides was density of the slope, rather than intensity of the rainfall and during the flowslide the sudden increase in pore pressure was observed. Higher pore pressure was observed at the toe of the slope as compared to upper part of the slope.


2021 ◽  
Vol 1 ◽  
pp. 17-24
Author(s):  
Abdessattar LAMAMRA ◽  
◽  
Dmitriy Leonidovich NEGURITSA ◽  
Samir BEDR ◽  
Ariant A. REKA ◽  
...  

Reserch relaevance. Most ground movements are generally due to rock instability, this natural phenomenon poses a risk to humanity. The properties of the rock mass directly influence the type of movement especially in underground structures. Research aim. Our goal is to characterize and classify the rock mass of diatomite from the sig mine using geomechanical classification systems such as the RQD and RMR in order to determine the quality of the rocks in the sig mine Western Algeria from the determination of the physical and mechanical properties. Methodology. In this article, the characterization analysis of the diatomite rock mass of the sig mine was carried out. First, determinations of the physical properties and carried out the triaxial test to determine the mechanical properties (young’s modulus, the friction angle, the dilatancy angle, the cohesion, the poisson’s ratio). Secondly to classify the deposit and give a recommendation to avoid stability problems. Research results. The results from physical and mechanical analyzes, it can be said that the nature of the rock present in the diatomite (underground mine) does not have enough resistance. Conclusion. Our study definitively proves that the rock mass of sig diatomite is of very low quality and it will be very dangerous for the underground mining work of the mine especially in places where the mineralized layer is very deep. And we suggest to replace the mining technique room and pillar currently used in the diatomite mine and put another mining method which includes roof support system to ensure the safety both of the miners and the equipment.


2020 ◽  
Vol 12 (7) ◽  
pp. 2839
Author(s):  
Sinhang Kang ◽  
Seung-Rae Lee ◽  
Sung-Eun Cho

Shallow slope failures occur almost every year during the rainy season. Continuous observation of the meteorological parameters and hydrological characteristics is required to more clearly understand the triggering mechanisms of shallow slope failure. In addition, influential factors, such as type of relative permeability models, air flow, and variation of hydraulic conductivity associated with stress–strain behavior of soil, have significant effects on the actual mechanism of rainfall infiltration. Real-time data including hourly rainfall and pore water pressure in response to rainfall was recorded by devices; then, the change in pore pressure from the devices was compared to the results from the infiltration analysis with applications of three relative permeability models, air flow, and the coupled hydro-mechanical analysis to examine an appropriate site-specific approach to a rainfall infiltration analysis. The infiltration and stability analyses based on the site-specific hydrologic characteristics were utilized to create maps of safety factors that depend on the cumulative rainfall. In regions vulnerable to landslides, rainfall forecast information and safety factor maps built by applying various rainfall scenarios can be useful in preparing countermeasures against disasters during the rainy season.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Jihuan Han ◽  
Jiuqun Zou ◽  
Weihao Yang ◽  
Chenchen Hu

With the increase in shaft depth, the problem of cracks and leakage in single-layer concrete lining in porous water-rich stable rock strata has become increasingly clear, in which case the mechanism of fracturing in shaft lining remains unclear. Considering that the increase in pore water pressure can cause rock mass expansion, this paper presents the concept of hydraulic expansion coefficient. First, a cubic model containing spherical pores is established for studying hydraulic expansion, and the ANSYS numerical simulation, a finite element numerical method, was used for calculating the volume change of the model under the pore water pressure. By means of the multivariate nonlinear regression method, the regression equation of the hydraulic expansion coefficient is obtained. Second, based on the hydraulic expansion effect on the rock mass, an interaction model of pore water pressure–porous rock–shaft lining is established and further solved. Consequently, the mechanism of fracturing in shaft lining caused by high-pressure pore water is revealed. The results show that the hydraulic expansion effect on the surrounding rock increases with its porosity and decreases with its elastic modulus and Poisson’s ratio; the surrounding rock expansion caused by the change in pore water pressure can result in the outer edge of the lining peeling off from the surrounding rock and tensile fracturing at the inner edge. Therefore, the results have a considerable guiding significance for designing shaft lining through porous water-rich rock strata.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Qingzhen Guo ◽  
Haijian Su ◽  
Hongwen Jing ◽  
Wenxin Zhu

Water inrush caused by the wetting-drying cycle is a difficult problem in tunnel excavation. To investigate the effect of the wetting-drying cycle on the stability of the tunnel surrounding rock, physical experiments and numerical simulations regarding the process of tunnel excavation with different wetting-drying cycle numbers were performed in this study. The evolutions of stress, displacement, and pore water pressure were analyzed. With the increase in cycle number, the pore water pressure, vertical stress, and top-bottom approach of the tunnel surrounding rock increase gradually. And the increasing process could be divided into three stages: slightly increasing stage, slowly increasing stage, and sharply increasing stage, respectively. The failure process of the surrounding rock under the wetting-drying cycle gradually occurs from the roof to side wall, while the baseplate changes slightly. The simulation results showed that the maximum principal stress in the surrounding rock mass of the tunnel increases, while the minimum principal stress decreases. Furthermore, the displacement of the rock mass decreases gradually with the increasing distance from the tunnel surface. By comparing the simulation results with the experimental results, well consistency is shown. The results in this study can provide helpful references for the safe excavation and scientific design of a tunnel under the wetting-drying cycle.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Zhan-ping Song ◽  
Ten-tian Yang ◽  
An-nan Jiang

To study the tunnel stability at various static water pressures and determine the mechanical properties and deformation behavior of surrounding rock, a modified effective stress formula was introduced into a numerical integration algorithm of elastic-plastic constitutive equation, that is, closest point projection method (CPPM). Taking the effects of water pressure and seepage into account, a CPPM-based formula was derived and a CPPM algorithm based on Drucker-Prager yield criterion considering the effect of pore water pressure was provided. On this basis, a CPPM-based elastic-plastic numerical analysis program considering pore water pressure was developed, which can be applied in the engineering of tunnels and other underground structures. The algorithm can accurately take the effects of groundwater on stability of surrounding rock mass into account and it can show the more pronounced effect of pore water pressure on stress, deformation, and the plastic zone in a tunnel. The stability of water flooding in Fusong tunnel was systematically analyzed using the developed program. The analysis results showed that the existence of groundwater seepage under tunnel construction will give rise to stress redistribution in the surrounding rock mass. Pore water pressure has a significant effect on the surrounding rock mass.


2014 ◽  
Vol 501-504 ◽  
pp. 1927-1931
Author(s):  
Guang Ju Wen ◽  
Wen Jie Deng ◽  
Feng Wen

Based on the characteristics of slope failure induced by rainfall, from the point of view of moisture migration and combining unsaturated soil mechanics, the characteristics of moisture migration in slope under different rainfall intensities were analyzed by finite element method. The results reveal that under rainfall, the pore water pressure in slope is in layered distribution, and at the bottom of slope, the pore water pressure is the highest, the top is lower and the middle is the lowest. The volumetric water content is in nonlinear distribution and the degree of nonlinear in unsaturated area is higher than that of the saturated area. The permeability coefficient of soil rises with the increase of rainfall intensity, and when the soil is saturated, its permeability coefficient is saturate permeability coefficient.


2013 ◽  
Vol 184 (1-2) ◽  
pp. 171-181
Author(s):  
Hugues Georges Rameau ◽  
Claude Prepetit ◽  
Jean-Claude Verbrugge

Abstract Water precipitation in road slopes, pavements, and shoulders may cause disturbances such as erosion, increase of the water table level, decrease of the carriageway bearing capacity, and so on. Roads are normally equiped with drainage systems that are sized and implemented in accordance with the rules of art. These equipments are used for the collection and quick evacuation of water precipitation estimated on the basis of the return period that is taken into account. Despite that, rainwater can still infiltrate unprotected cut or fill slopes, and pavements for repeated and intense rainfalls, which may cause a raise in pore-water pressure and a decrease of the factor of safety of road slopes. Using laboratory rainfall simulation techniques, infiltration measurements were made on intact samples to determine with respect to soil properties, how cumulative rainfalls cause decrease in apparent cohesion and lead to slope failure. This paper focuses on describing the relationship between the rainfall characteristics, the changes in soil water profile, and the changes in apparent cohesion for sandy clay samples collected on the national road RN3 located in Haiti. For a set of consecutive rainfall events at around an interval of 24 hours, the results prove that when wetting front depth approaches 2 meters or more, the risk of landslide is proportionally high in a soil with apparent cohesion (Ca) initially high and an effective cohesion (c′) relatively low.


2005 ◽  
Vol 2 ◽  
pp. 305-308 ◽  
Author(s):  
S. Dapporto ◽  
P. Aleotti ◽  
N. Casagli ◽  
G. Polloni

Abstract. On 14-16 November 2002 the North Italy was affected by an intense rainfall event: in the Albaredo valley (Valtellina) more than 200 mm of rain fell triggering about 50 shallow landslides, mainly soil slips and soil slip-debris flows. Landslides occurred above the critical rainfall thresholds computed by Cancelli and Nova (1985) and Ceriani et al. (1994) for the Italian Central Alps: in fact the cumulative precipitation at the soil slips initiation time was 230 mm (in two days) with a peak intensity of 15 mm/h. A coupled analysis of seepage and instability mechanisms is performed in order to evaluate the potential for slope failure during the event. Changes in positive and negative pore water pressures during the event are modelled by a finite element analysis of water flow in transient conditions, using as boundary condition for the nodes along the slope surface the recorded rainfall rate. The slope stability analysis is conducted applying the limit equilibrium method, using pore water pressure distributions obtained in the different time steps by the seepage analysis as input data for the calculation of the factor of safety.


Sign in / Sign up

Export Citation Format

Share Document