scholarly journals Effects of Tea Polyphenols on the Activities of Antioxidant Enzymes and the Expression of Related Gene in the Leaves of Wheat Seedlings Under Salt Stress

Author(s):  
Ya Zhang ◽  
Guiying Li ◽  
Lianbang Si ◽  
Na Liu ◽  
Tianpeng Gao ◽  
...  

Abstract Longchun 30, a new wheat variety, was used to investigate seedling growth, element absorption and antioxidant response under 150 mM NaCl and tea polyphenols (TP) (25 and 100 mg L− 1) treatments alone or in combination, thus revealing TP-alleviating mechanism on the salt damage to plants. 150 mM NaCl stress alone inhibited the seedling growth, increased sodium content and reactive oxygen species (ROS) accumulation, but reduced potassium (K) and calcium (Ca) levels at different culture times, thus resulting in the oxidative damage to the leaves. Even though TP treatment alone led to the significant increase of ROS generation, TP-treated leaves exhibited the reduction of relative electrical conductivity and no change of malondialdehyde content. Moreover, high TP concentration alone stimulated the seedling growth. In addition, the activities and gene expression of superoxide dismutase, catalase and peroxidase (POD) as well as diamine oxidase and polyamine oxidase were changed to different degrees due to NaCl or TP treatment alone. Further study showed that the presence of TP promoted the seedling growth, increased K+ and Ca2+ contents, and led to the reduction of ROS accumulation. Taken together, salinity-inhibitory effect on the growth of wheat seedlings might be associated with salt-induced imbalance of element content and the increase of oxidative damage resulting from ROS accumulation, while the application of TP effectively alleviated salinity-inhibitory effect on the seedling growth and improved the tolerance of wheat seedlings to salt environment, which might be associated with the increases of K+ and Ca2+ contents as well as the reduction of oxidative damage in the leaves of wheat seedlings under NaCl and TP treatment in combination.

Author(s):  
MF Ghafoor ◽  
Q Ali ◽  
A Malik

The present research experiment was conducted in the greenhouse of the Institute of Molecular Biology and Biotechnology, The University of Lahore for determining the possible involvement of salicylic acid (SA) in seed priming and affects on the seedling growth and development under NaCl treatments in wheat variety ANAJ-2017, Shafaq-2006 and Galaxy-2013. The data was collected for various seedling traits and statistically analyzed, which revealed the significance of results for treatments, salt applications, genotypes and the interactions between salt treatments and genotypes. The lower coefficient of variation was recorded for all studied traits which revealed that there was consistency among the results for salicylic acid applications and salt or NaCl treatments. It was concluded from our study that the application of salicylic acid (SA) under salt (NaCl) stress conditions helps wheat seedlings to withstand and compete with stressful conditions. The study revealed that the seed priming with salicylic acid helps to improve root length, shoot length, seedling moisture percentage and fresh seedling weights. The application of NaCl caused to increase the root length, number of roots and shoot length of wheat while salicylic acid (SA) was applied in foliar spray. The use of water priming shows medium effects for the seedling growth of wheat under salt stress environmental conditions. The wheat variety Galaxy-2013 has shown good performance for most of the studied traits of seedlings under salt stress conditions. It was suggested from our study that the variety Galaxy-2013 may be used under salt stress conditions or salt affected soils to improve grain yield of wheat.


2019 ◽  
Vol 48 (3) ◽  
pp. 625-632
Author(s):  
Dilek Çavuşoğlu

The role of L-lysine (Lys) on some cytogenetic and physiological parameters in Allium cepa L. seeds exposed to salt was evaluated. NaCl stress on the other hand showed a significantly inhibitory effect on the seedling growth and seed germination of Allium cepa. Besides, it significantly reduced the mitotic index in the root tip meristems of seeds and increased micronuclei which are the most effective and simplest indicator of cytological damage and chromosomal abnormalities. However, the effects of salinity on chromosomal aberrations, seedling growth, seed germination and mitotic activity have decreased significantly with Lys application.


2011 ◽  
Vol 63 (3) ◽  
pp. 723-729 ◽  
Author(s):  
Demir Kaya ◽  
Suay Bayramin ◽  
Gamze Kaya ◽  
Oguzhan Uzun

Safflower is an important oilseed crop and is largely grown for edible oil production in low moisture or saltaffected soils of Turkey. The objective of the study was to find out the quality of seeds with different sized seeds, and the effects of seed size (3, 4 and 5 mm) and NaCl stresses at electrical conductivities of 5, 10, 20 and 30 dS m-1 on the germination and early seedling growth of the safflower cultivar Din?er. Our results show that heavier one-thousand-seed weight (70.5 g) and higher hull percentage (52.9 %) were obtained from large seeds while the oil content and water uptake of small seeds was higher than that of medium or large seeds. Germination percentage, germination time, root length, shoot length, and seedling fresh and dry weight showed size-dependent responses of the seeds to salt stress. In general, medium-sized (4 mm) seeds germinated more rapidly compared to small and large seeds against all levels of salt stress; however, the highest germination percentage and most vigorous seedling growth was recorded from large seeds after 10 days incubation. The inhibitory effect of NaCl levels was exhibited a drastic effect on seedling growth. Increased NaCl resulted in an increase in the Na+ and Cl- content of the seedlings produced by all seed sizes, while the K+ content was not changed. However, the seedlings from small seeds had the highest Na+ and Cl- content of all measured NaCl levels. It was concluded that large seeds produced vigorous seedling growth due to a lower ion accumulation under NaCl stress. Consequently, large seeds could be used for successful stand establishment in contrast to their slow germination performance if the cultivation of safflower on saline soils is required.


2013 ◽  
Vol 20 (10) ◽  
pp. 1303-1309 ◽  
Author(s):  
Jing MU ◽  
Xiao-Jing LIU ◽  
Jin XU ◽  
Ren-Zhao MAO ◽  
Wei WEI ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 493 ◽  
Author(s):  
Tania Kartseva ◽  
Anelia Dobrikova ◽  
Konstantina Kocheva ◽  
Vladimir Alexandrov ◽  
Georgi Georgiev ◽  
...  

Strategies and coping mechanisms for stress tolerance under sub-optimal nutrition conditions could provide important guidelines for developing selection criteria in sustainable agriculture. Nitrogen (N) is one of the major nutrients limiting the growth and yield of crop plants, among which wheat is probably the most substantial to human diet worldwide. Physiological status and photosynthetic capacity of two contrasting wheat genotypes (old Slomer and modern semi-dwarf Enola) were evaluated at the seedling stage to assess how N supply affected osmotic stress tolerance and capacity of plants to survive drought periods. It was evident that higher N input in both varieties contributed to better performance under dehydration. The combination of lower N supply and water deprivation (osmotic stress induced by polyethylene glycol treatment) led to greater damage of the photosynthetic efficiency and a higher degree of oxidative stress than the individually applied stresses. The old wheat variety had better N assimilation efficiency, and it was also the one with better performance under N deficiency. However, when both N and water were deficient, the modern variety demonstrated better photosynthetic performance. It was concluded that different strategies for overcoming osmotic stress alone or in combination with low N could be attributed to differences in the genetic background. Better performance of the modern variety conceivably indicated that semi-dwarfing (Rht) alleles might have a beneficial effect in arid regions and N deficiency conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takaaki Higashihara ◽  
Hiroshi Nishi ◽  
Koji Takemura ◽  
Hiroshi Watanabe ◽  
Toru Maruyama ◽  
...  

AbstractIn patients with chronic kidney disease, skeletal muscle dysfunction is associated with mortality. Uremic sarcopenia is caused by ageing, malnutrition, and chronic inflammation, but the molecular mechanism and potential therapeutics have not been fully elucidated yet. We hypothesize that accumulated uremic toxins might exert a direct deteriorative effect on skeletal muscle and explore the pharmacological treatment in experimental animal and culture cell models. The mice intraperitoneally injected with indoxyl sulfate (IS) after unilateral nephrectomy displayed an elevation of IS concentration in skeletal muscle and a reduction of instantaneous muscle strength, along with the predominant loss of fast-twitch myofibers and intramuscular reactive oxygen species (ROS) generation. The addition of IS in the culture media decreased the size of fully differentiated mouse C2C12 myotubes as well. ROS accumulation and mitochondrial dysfunction were also noted. Next, the effect of the β2-adrenergic receptor (β2-AR) agonist, clenbuterol, was evaluated as a potential treatment for uremic sarcopenia. In mice injected with IS, clenbuterol treatment increased the muscle mass and restored the tissue ROS level but failed to improve muscle weakness. In C2C12 myotubes stimulated with IS, although β2-AR activation also attenuated myotube size reduction and ROS accumulation as did other anti-oxidant reagents, it failed to augment the mitochondrial membrane potential. In conclusion, IS provokes muscular strength loss (uremic dynapenia), ROS generation, and mitochondrial impairment. Although the β2-AR agonist can increase the muscular mass with ROS reduction, development of therapeutic interventions for restoring skeletal muscle function is still awaited.


1998 ◽  
Vol 26 (1) ◽  
pp. 89-95
Author(s):  
Ferenc Zsoldos ◽  
Ágnes Vashegyi ◽  
Ernst Haunold ◽  
Peter Herger ◽  
Attila Pécsváradi

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jun Ma ◽  
Xiankun Zeng ◽  
Min Zhou ◽  
Le Cheng ◽  
Difeng Ren

AbstractSpirulina platensis protein hydrolysates were prepared by digesting protein extracts with papain, and the hydrolysates were separated into 30, 10, and 3 kDa weights using membrane ultrafiltration. The 0–3 kDa low-molecular-weight Spirulina peptides (LMWSPs) proved the highest chemical antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability, hydroxyl radical (·OH) scavenging activities and total antioxidant capacity. Cellular antioxidant ability of LMWPs fractions against 2000 μg/mL H2O2 induced oxidative damage of L02 cells were investigated. The MTT assay results displayed that LMWSPs at different concentrations (0–1000 μg/mL) had proliferation effect on the L02 cells and that treatment of the L02 cells with the 1000 μg/mL LMWSPs (0–3 kDa) significantly prevented H2O2-induced oxidative damage compared with control cells. Moreover, the 2′,7′-dichlorofluorescein diacetate (DCFH-DA) fluorescent probe assay showed that the levels of ROS and NO were significantly lower in the experimental group that was treated with the peptides for 24 h than in the control group. Furthermore, using the corresponding kits, the treatment inhibited the reduction of SOD activity and the increase of MDA contents in the L02 cells. Therefore, LMWSPs (0–3 kDa) may have potential applications in antioxidant and liver health products.


Sign in / Sign up

Export Citation Format

Share Document