scholarly journals The prognostic value of a tumor microenvironment-based immune cell infiltration score model in colon cancer

Author(s):  
Xiaofen Pan ◽  
Xingkui Tang ◽  
Minling Liu ◽  
Xijun Luo ◽  
Mengyuan Zhu ◽  
...  

Abstract BackgroundTumor microenvironment consists of tumor cells, immune cells and other matric components. Tumor infiltration immune cells are associated with prognosis. But all the current prognosis evaluation system dose not take tumor immune cells other matrix component into consideration. In the current study, we aimed to construct a prognosis predictive model based on tumor microenvironment.MethodCIBERSORT and ESTIMATE algorithms were used to reveal the immune cell infiltration landscape of colon cancer. Patients were classified into three clusters by ConsensusClusterPlus algorithm. Immune cell infiltration (ICI) scores of each patient were determine by principal-component analysis. Patients were divided to high and low ICI score groups. Survival, gene expression and somatic mutation of the two groups were compared.ResultsPatients with no lymph node invasion, no metastasis, T1-2 disease and stage I-II had higher ICI scores. Calcium signaling pathway, leukocyte transendothelial migration pathway, MAPK signaling pathway, TGF β pathway, and WNT signaling pathway were enriched in high ICI score group. Immune-checkpoint genes and immune-activity associated genes were significantly decreased in high ICI score. Patients in high ICI score group had better survival than low ICI score group. Prognostic value of ICI score was independent of TMB.ConclusionICI score might serve as an independent prognostic biomarker in colon cancer.

2021 ◽  
Vol 11 ◽  
Author(s):  
Xingkui Tang ◽  
Minling Liu ◽  
Xijun Luo ◽  
Mengyuan Zhu ◽  
Shan Huang ◽  
...  

The current study aimed to construct a prognostic predictive model based on tumor microenvironment. CIBERSORT and ESTIMATE algorithms were used to reveal the immune cell infiltration (ICI) landscape of colon cancer. Patients were classified into three clusters by ConsensusClusterPlus algorithm. ICI scores of each patient were determined by principal component analysis. Patients were divided into high and low ICI score groups. Survival, gene expression, and somatic mutation of the two groups were compared. We found that patients with no lymph node invasion, no metastasis, T1–2 disease, and stage I–II had higher ICI scores. Calcium signaling pathway, leukocyte transendothelial migration pathway, MAPK signaling pathway, TGF β pathway, and Wnt signaling pathway were enriched in the high ICI score group. Immune-checkpoint and immune-activity associated genes were decreased in high ICI score patients. Patients in the high ICI score group had better survival. Prognostic value of ICI score was independent of tumor mutational burden (TMB). The ICI score model constructed in the current study may serve as an independent prognostic biomarker in colon cancer.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shaokun Wang ◽  
Li Pang ◽  
Zuolong Liu ◽  
Xiangwei Meng

Abstract Background The change of immune cell infiltration essentially influences the process of colorectal cancer development. The infiltration of immune cells can be regulated by a variety of genes. Thus, modeling the immune microenvironment of colorectal cancer by analyzing the genes involved can be more conducive to the in-depth understanding of carcinogenesis and the progression thereof. Methods In this study, the number of stromal and immune cells in malignant tumor tissues were first estimated by using expression data (ESTIMATE) and cell-type identification with relative subsets of known RNA transcripts (CIBERSORT) to calculate the proportion of infiltrating immune cell and stromal components of colon cancer samples from the Cancer Genome Atlas database. Then the relationship between the TMN Classification and prognosis of malignant tumors was evaluated. Results By investigating differentially expressed genes using COX regression and protein-protein interaction network (PPI), the candidate hub gene serine protease inhibitor family E member 1 (SERPINE1) was found to be associated with immune cell infiltration. Gene Set Enrichment Analysis (GSEA) further projected the potential pathways with elevated SERPINE1 expression to carcinogenesis and immunity. CIBERSORT was subsequently utilized to investigate the relationship between the expression differences of SERPINE1 and immune cell infiltration and to identify eight immune cells associated with SERPINE1 expression. Conclusion We found that SERPINE1 plays a role in the remodeling of the colon cancer microenvironment and the infiltration of immune cells.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hao Xu ◽  
Qianhui Xu ◽  
Lu Yin

Abstract Background Although immunotherapy for colon cancer has made promising progress, only a few patients currently benefit from it. A recent study revealed that infiltrating immune cells are highly relevant to tumor prognosis and influence the expression of immune-related genes. However, the characterization of immune cell infiltration (ICI) has not yet been comprehensively analyzed and quantified in colon adenocarcinoma (COAD). Methods The multiomic data of COAD samples were downloaded from TCGA. ESTIMATE algorithm, ssGSEA method and CIBERSORT analysis were conducted to estimate the subpopulations of infiltrating immune cells. COAD subtypes based on ICI pattern were identified by consensus clustering then principal-component analysis was performed to obtain ICI scores to quantify the ICI patterns in individual tumors. Kaplan–Meier analysis was employed to validate prognostic value. Gene set enrichment analysis (GSEA) was applied for functional annotation. Finally, the mutation data was analyzed by employing “maftools” package. Results Three bioinformatics algorithms were used to evaluate the ICI patterns from 538 patients with COAD. Two ICI subtypes were determined using consensus clustering, and the ICI score was constructed by performing principal component analysis. Our findings showed that a higher ICI score often indicated a more advanced tumor and worse prognosis. The high-ICI score subgroup had a higher stromal score and more M0 macrophages but fewer plasma cells and decreased CD8 T cell infiltration. In addition, patients with high ICI scores had significantly higher expression levels of HAVCR2 and PCDC1LG2. Real-time polymerase chain reaction (PCR) was conducted to determine the prognostic significances of ICI-related genes. Conclusions In conclusion, ICI score may be considered as an original and useful indicator for independent prognostic prediction and individual immune-related therapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shuang Gao ◽  
Ye Jin ◽  
Hongmei Zhang

WNT signaling pathway inhibitor Dickkopf-1 (DKK1) is related to cancer progression; however, its diagnostic and prognostic potential have not been investigated in a pan-cancer perspective. In this study, multiple bioinformatic analyses were conducted to evaluate therapeutic value of DKK1 in human cancers. The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) project served as data resources. The Wilcoxon rank test was performed to evaluate the expression difference of DKK1 between cancer tissues and normal tissues. A Kaplan-Meier curve and Cox regression were used for prognosis evaluation. Single-sample gene set enrichment analysis (ssGSEA) was used to evaluate the association of DKK1 expression with the immune cell infiltration. The potential function of DKK1 was explored by STRING and clusterProfiler. We found that the expression level of DKK1 is significantly different in different cancer types. Importantly, we demonstrated that DKK1 is an independent risk factor in ESCA, LUAD, MESO, and STAD. Further analysis revealed that DKK1 had a large effect on the immune cell infiltration and markers of certain immune cells, such as Th1 and Th2 cells. PPI network analysis and further pathway enrichment analysis indicated that DKK1 was mainly involved in the WNT signaling pathway. Our findings suggested that DKK1 might serve as a marker of prognosis for certain cancers by affecting the WNT signaling pathway and tumor immune microenvironment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhidong Huang ◽  
Junjing Li ◽  
Jialin Chen ◽  
Debo Chen

Purpose: The role of 5-methylcytosine-related long non-coding RNAs (m5C-lncRNAs) in breast cancer (BC) remains unclear. Here, we aimed to investigate the prognostic value, gene expression characteristics, and correlation between m5C-lncRNA risk model and tumor immune cell infiltration in BC.Methods: The expression matrix of m5C-lncRNAs in BC was obtained from The Cancer Genome Atlas database, and the lncRNAs were analyzed using differential expression analysis as well as univariate and multivariate Cox regression analysis to eventually obtain BC-specific m5C-lncRNAs. A risk model was developed based on three lncRNAs using multivariate Cox regression and the prognostic value, accuracy, as well as reliability were verified. Gene set enrichment analysis (GSEA) was used to analyze the Kyoto Encyclopedia of Genes and Genomes signaling pathway enrichment of the risk model. CIBERSORT algorithm and correlation analysis were used to explore the characteristics of the BC tumor-infiltrating immune cells. Finally, reverse transcription-quantitative polymerase chain reaction was performed to detect the expression level of three lncRNA in clinical samples.Results: A total of 334 differential m5C-lncRNAs were identified, and three BC-specific m5C-lncRNAs were selected, namely AP005131.2, AL121832.2, and LINC01152. Based on these three lncRNAs, a highly reliable and specific risk model was constructed, which was proven to be closely related to the prognosis of patients with BC. Therefore, a nomogram based on the risk score was built to assist clinical decisions. GSEA revealed that the risk model was significantly enriched in metabolism-related pathways and was associated with tumor immune cell infiltration based on the analysis with the CIBERSORT algorithm.Conclusion: The efficient risk model based on m5C-lncRNAs associated with cancer metabolism and tumor immune cell infiltration could predict the survival prognosis of patients, and AP005131.2, AL121832.2, and LINC01152 could be novel biomarkers and therapeutic targets for BC.


Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 522
Author(s):  
Dehua Liu ◽  
Chenyu Sun ◽  
Nahyun Kim ◽  
Chandur Bhan ◽  
John Pocholo Whitaker Tuason ◽  
...  

Gastric cancer (GC) is the fifth most common cancer globally. Secreted frizzled-related proteins (SFRP) are important elements associated with the Wnt signaling pathway, and its dysregulated expression is found in multiple cancers. However, the function of distinct SFRPs in GC remains poorly understood. We investigated the differential expression, prognostic value, and immune cell infiltration of SFRPs in gastric cancer patients from the Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN, Kaplan–Meier plotter, cBioPortal, STRING, Gene-MANIA, DAVID, MethSurv, and TIMER databases. We found that the expression levels of SFRP2 and SFRP4 were significantly increased in GC tissues, whereas the SFRP1 and SFRP5 expressions were reduced. SFRP1, SFRP2, and SFRP5 were significantly correlated with the clinical cancer stage in GC patients. Higher expression of SFRPs was associated with short overall survival (OS) in GC patients. Besides, high SFRPs methylation showed favorable OS in GC patients. The functions of SFRPs were primarily related to the Wnt signaling pathway, immune system development, and basal cell carcinoma. The expression of SFRPs was strongly correlated with immune infiltrating cells, including CD4+ T cells and macrophages in GC. Our study indicated that SFRPs could be potential targets of precision therapy and prognostic biomarkers for the survival of GC patients.


2021 ◽  
Vol 15 ◽  
Author(s):  
Dezhi Shan ◽  
Xing Guo ◽  
Guozheng Yang ◽  
Zheng He ◽  
Rongrong Zhao ◽  
...  

Intracranial aneurysms (IAs) may cause lethal subarachnoid hemorrhage upon rupture, but the molecular mechanisms are poorly understood. The aims of this study were to analyze the transcriptional profiles to explore the functions and regulatory networks of differentially expressed genes (DEGs) in IA rupture by bioinformatics methods and to identify the underlying mechanisms. In this study, 1,471 DEGs were obtained, of which 619 were upregulated and 852 were downregulated. Gene enrichment analysis showed that the DEGs were mainly enriched in the inflammatory response, immune response, neutrophil chemotaxis, and macrophage differentiation. Related pathways include the regulation of actin cytoskeleton, leukocyte transendothelial migration, nuclear factor κB signaling pathway, Toll-like receptor signaling pathway, tumor necrosis factor signaling pathway, and chemokine signaling pathway. The enrichment analysis of 20 hub genes, subnetworks, and significant enrichment modules of weighted gene coexpression network analysis showed that the inflammatory response and immune response had a causal relationship with the rupture of unruptured IAs (UIAs). Next, the CIBERSORT method was used to analyze immune cell infiltration into ruptured IAs (RIAs) and UIAs. Macrophage infiltration into RIAs increased significantly compared with that into UIAs. The result of principal component analysis revealed that there was a difference between RIAs and UIAs in immune cell infiltration. A 4-gene immune-related risk model for IA rupture (IRMIR), containing CXCR4, CXCL3, CX3CL1, and CXCL16, was established using the glmnet package in R software. The receiver operating characteristic value revealed that the model represented an excellent clinical situation for potential application. Enzyme-linked immunosorbent assay was performed and showed that the concentrations of CXCR4 and CXCL3 in serum from RIA patients were significantly higher than those in serum from UIA patients. Finally, a competing endogenous RNA network was constructed to provide a potential explanation for the mechanism of immune cell infiltration into IAs. Our findings highlighted the importance of immune cell infiltration into RIAs, providing a direction for further research.


2020 ◽  
Author(s):  
Jukun Song ◽  
Song He ◽  
Wei Wang ◽  
Jiaming Su ◽  
Dongbo Yuan ◽  
...  

Abstract Background Immune infiltration of Prostate cancer (PCa) was highly related to clinical outcomes. However, previous works failed to elucidate the diversity of different immune cell types that make up the function of the immune response system. The aim of the study was to uncover the composition of TIICs in PCa utilizing the CIBERSORT algorithm and further reveal the molecular characteristics of PCa subtypes. Method In the present work, we employed the CIBERSORT method to evaluate the relative proportions of immune cell profiling in PCa and adjacent samples, normal samples. We analyzed the correlation between immune cell infiltration and clinical information. The tumor-infiltrating immune cells of the TCGA PCa cohort were analyzed for the first time. The fractions of 22 immune cell types were imputed to determine the correlation between each immune cell subpopulation and clinical feature. Three types of molecular classification were identified via R-package of “CancerSubtypes”. The functional enrichment was analyzed in each subtype. The submap and TIDE algorithm were used to predict the clinical response to immune checkpoint blockade, and GDSC was employed to screen chemotherapeutic targets for the potential treatment of PCa. Results In current work, we utilized the CIBERSORT algorithm to assess the relative proportions of immune cell profiling in PCa and adjacent samples, normal samples. We investigated the correlation between immune cell infiltration and clinical data. The tumor-infiltrating immune cells in the TCGA PCa cohort were analyzed. The 22 immune cells were also calculated to determine the correlation between each immune cell subpopulation and survival and response to chemotherapy. Three types of molecular classification were identified. Each subtype has specific molecular and clinical characteristics. Meanwhile, Cluster I is defined as advanced PCa, and is more likely to respond to immunotherapy. Conclusions Our results demonstrated that differences in immune response may be important drivers of PCa progression and response to treatment. The deconvolution algorithm of gene expression microarray data by CIBERSOFT provides useful information about the immune cell composition of PCa patients. In addition, we have found a subtype of immunopositive PCa subtype and will help to explore the reasons for the poor effect of PCa on immunotherapy, and it is expected that immunotherapy will be used to guide the individualized management and treatment of PCa patients.


2021 ◽  
Vol 14 (8) ◽  
pp. 1151-1159
Author(s):  
Chen-Lu Liao ◽  
◽  
Xing-Yu Sun ◽  
Qi Zhou ◽  
Min Tian ◽  
...  

AIM: To investigate the role of tumor microenvironment (TME)-related long non-coding RNA (lncRNA) in uveal melanoma (UM), probable prognostic signature and potential small molecule drugs using bioinformatics analysis. METHODS: UM expression profile data were downloaded from the Cancer Genome Atlas (TCGA) and bioinformatics methods were used to find prognostic lncRNAs related to UM immune cell infiltration. The gene expression profile data of 80 TCGA specimens were analyzed using the single sample Gene Set Enrichment Analysis (ssGSEA) method, and the immune cell infiltration of a single specimen was evaluated. Finally, the specimens were divided into high and low infiltration groups. The differential expression between the two groups was analyzed using the R package ‘edgeR’. Univariate, multivariate and Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression analyses were performed to explore the prognostic value of TME-related lncRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional analyses were also performed. The Connectivity Map (CMap) data set was used to screen molecular drugs that may treat UM. RESULTS: A total of 2393 differentially expressed genes were identified and met the criteria for the low and high immune cell infiltration groups. Univariate Cox analysis of lncRNA genes with differential expression identified 186 genes associated with prognosis. Eight prognostic markers of TME-included lncRNA genes were established as potentially independent prognostic elements. Among 269 differentially expressed lncRNAs, 69 were up-regulated and 200 were down-regulated. Univariate Cox regression analysis of the risk indicators and clinical characteristics of the 8 lncRNA gene constructs showed that age, TNM stage, tumor base diameter, and low and high risk indices had significant prognostic value. We screened the potential small-molecule drugs for UM, including W-13, AH-6809 and Imatinib. CONCLUSION: The prognostic markers identified in this study are reliable biomarkers of UM. This study expands our current understanding of the role of TME-related lncRNAs in UM genesis, which may lay the foundations for future treatment of this disease.


2021 ◽  
Vol 11 ◽  
Author(s):  
Young-Sil An ◽  
Se-Hyuk Kim ◽  
Tae Hoon Roh ◽  
So Hyun Park ◽  
Tae-Gyu Kim ◽  
...  

BackgroundThe purpose of this study was to investigate the correlation between 18F-fluorodeoxyglucose (FDG) uptake and infiltrating immune cells in metastatic brain lesions.MethodsThis retrospective study included 34 patients with metastatic brain lesions who underwent brain 18F-FDG positron emission tomography (PET)/computed tomography (CT) followed by surgery. 18F-FDG uptake ratio was calculated by dividing the standardized uptake value (SUV) of the metastatic brain lesion by the contralateral normal white matter uptake value. We investigated the clinicopathological characteristics of the patients and analyzed the correlation between 18F-FDG uptake and infiltration of various immune cells. In addition, we evaluated immune-expression levels of glucose transporter 1 (GLUT1), hexokinase 2 (HK2), and Ki-67 in metastatic brain lesions.ResultsThe degree of 18F-FDG uptake of metastatic brain lesions was not significantly correlated with clinical parameters. There was no significant relationship between the 18F-FDG uptake and degree of immune cell infiltration in brain metastasis. Furthermore, other markers, such as GLUT1, HK2, and Ki-67, were not correlated with degree of 18F-FDG uptake. In metastatic brain lesions that originated from breast cancer, a higher degree of 18F-FDG uptake was observed in those with high expression of CD68.ConclusionsIn metastatic brain lesions, the degree of 18F-FDG uptake was not significantly associated with infiltration of immune cells. The 18F-FDG uptake of metastatic brain lesions from breast cancer, however, might be associated with macrophage activity.


Sign in / Sign up

Export Citation Format

Share Document