scholarly journals CD33 as a Leukocyte-Associated Marker Expressed on Human Spermatozoa

Author(s):  
Nasrin Sereshki ◽  
Mitra Rafiee ◽  
Razieh Alipour ◽  
Sasan Navkhasi ◽  
Vahid Ahmadipanah ◽  
...  

Abstract Background Sialic acid-binding immunoglobulin-type lectins (Siglecs) are commonly present on immune cells and often mediate cell-to-cell interactions and signaling. Studies have shown the presence of Siglecs 1, 2, 5, 6, 10 and 14 on human spermatozoa. To the best of our knowledge, the expression of CD33 on spermatozoa has not yet been studied. Methods Semen samples were collected from 25 healthy men with normal semen status. CD33 expression on purified spermatozoa was evaluated by flow cytometry methods. Results The results demonstrate the expression of CD33 on the surface of purified spermatozoa. The mean (± SD) of MFI (mean fluorescence intensity) was 12.85 (± 1.33) and the mean percentage of spermatozoa that express CD33 was 73.75 (± 3.75). Conclusion Results were obtained showing that spermatozoa express CD33 (or Siglec-3) on their surface. The physiological role of these molecules on spermatozoa remains to be determined. It is recommended that further research should be undertaken regarding the role of Siglecs (such as CD33) on spermatozoa apoptosis.

1979 ◽  
Vol 236 (5) ◽  
pp. E539 ◽  
Author(s):  
M S Kim ◽  
K Y Lee ◽  
W Y Chey

In four dogs with a modified Herrara pancreatic fistula and gastric cannula and three dogs with two duodenal cannulas, ingestion of a meat meal resulted in a significant and sustained increase in the mean plasma immunoreactive secretin concentrations, from mean fasting levels of less than 10 pg/ml to 25--55 pg/ml. This increase in the plasma secretin concentration coincided with a marked increase in pancreatic bicarbonate output and frequent decreases in the mean proximal duodenal pH to less than 4.5 from the range of 6.5 in the fasting state. Intravenous administration of cimetidine, 150 mg, produced a marked suppression of postprandial increases in both pancreatic bicarbonate output and plasma secretin concentration. Moreover, the postprandial duodenal pH rarely reached below 5.0 after cimetidine administration. These studies indicate that plasma secretin concentration does increase significantly after a meal. The postprandial increase in plasma secretin concentration appears to depend on the gastric acid delivered in the proximal duodenum. A possible physiological role of secretin in the pancreatic secretion after a meal is indicated by these findings.


2021 ◽  
Vol 5 (2.1) ◽  
pp. 51
Author(s):  
Ling Cao ◽  
Xiaoliang Yuan

Sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) is a receptor that expresses on the surface of immune cells. It plays an important role in the body’s immune response. Increased expression of Siglec-9 has been reported in infectious diseases, autoimmune diseases and cancer. Pathogenic microorganism and tumor cells can inhibit the recognition and killing of immune cells by upregulating their own specific sialic acid and binding with Siglec-9 on the surface of host immune cells, and suppress the release of pro-inflammatory cytokines and promote the release of anti-inflammatory cytokines, eventually leading to immunosuppression, tumor immune escape and the like. However, the immunosuppressive function of Siglec-9 may be advantageous for diseases such as neutrophil asthma and autoimmune diseases. Therefore, further research on the mechanism of action of Siglec-9 is of great significance.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Hamza Hanieh

The immune system is regulated by distinct signaling pathways that control the development and function of the immune cells. Accumulating evidence suggest that ligation of aryl hydrocarbon receptor (Ahr), an environmentally responsive transcription factor, results in multiple cross talks that are capable of modulating these pathways and their downstream responsive genes. Most of the immune cells respond to such modulation, and many inflammatory response-related genes contain multiple xenobiotic-responsive elements (XREs) boxes upstream. Active research efforts have investigated the physiological role of Ahr in inflammation and autoimmunity using different animal models. Recently formed paradigm has shown that activation of Ahr by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 3,3′-diindolylmethane (DIM) prompts the differentiation of CD4+Foxp3+regulatory T cells (Tregs) and inhibits T helper (Th)-17 suggesting that Ahr is an innovative therapeutic strategy for autoimmune inflammation. These promising findings generate a basis for future clinical practices in humans. This review addresses the current knowledge on the role of Ahr in different immune cell compartments, with a particular focus on inflammation and autoimmunity.


1991 ◽  
Vol 260 (1) ◽  
pp. R142-R147 ◽  
Author(s):  
E. Grossman ◽  
R. F. Rea ◽  
A. Hoffman ◽  
D. S. Goldstein

It has been difficult to examine clinically the physiological role of central and peripheral alpha 2-adrenoceptors in humans. We simultaneously measured directly recorded peroneal skeletal muscle sympathoneural activity (MSNA) and the rate of appearance (spillover) of norepinephrine (NE) in forearm venous and arterial plasma before and at 15 min during intravenous administration of the alpha 2-blocker yohimbine (Yoh, 125 micrograms/kg bolus, 1 microgram.kg-1.min-1 infusion) in seven normal volunteers. Yoh administration increased mean arterial pressure by 16% (P less than 0.005), heart rate by 8% (P less than 0.05), and forearm vascular resistance by 67% (P less than 0.05). MSNA was increased by 73% (P less than 0.05), NE spillover into arterial blood by 125% (P less than 0.05), and forearm NE spillover (FSO) by 337% (P less than 0.005). Ganglion blockade by trimethaphan during Yoh infusion decreased MSNA to below detection limits and reversed Yoh-induced increases in arterial concentrations of NE and epinephrine. The results demonstrate that Yoh administration increases sympathoadrenal outflow. Because the mean increase of FSO was much larger than that of MSNA, the results suggest that alpha 2-adrenoceptors on sympathetic nerve endings modulate the neuronal release of NE for a given amount of sympathetic nerve traffic in humans; this effect seems prominent in the human limb.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 12-13
Author(s):  
Melissa M. Lee-Sundlov ◽  
Robert Burns ◽  
Renata Grozovsky ◽  
Silvia Giannini ◽  
Leonardo Rivadeneyra ◽  
...  

The Thomsen-Friedenreich antigen (TF-antigen) occurs during exposure of the underlying Core-1 disaccharide (Gal-beta(1,3)GalNAc) through the loss of its capping sialic acid (Sia). Exposure of the cryptic TF-antigen occurs during inflammation, during acute infections with influenza viruses or bacteria, in malignancies, and is associated with thrombocytopenia. Exposure of the TF-antigen on circulating blood cells, including platelets and red blood cells (RBC), can lead to severe thrombocytopenia or hemolysis in hemolytic uremic syndrome and other immune diseases. Recent data suggest that altered Sia may cause platelet destruction because treatment with the sialidase inhibitor Tamiflu increases platelet count in healthy and thrombocytopenic patients. In humans, genetic mutations involving Sia synthesis and transport, and atypical cell surface sialylation, unrelated to any genetic mutation, are associated with reduced platelet count, supporting the role of Sia in regulating platelet count. Immune cells, including classical dendritic cells (cDCs), plasmacytoid dendritic cells (pDCs), and subsets of T cells (CD8+, CD4+, and Treg cells) can also affect immune thrombocytopenia pathogenesis. Like many other immune cells, cDCs, and pDCs express Siglecs (sialic-acid-binding immunoglobulin-like lectins), which often contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that act as immunosuppressors. Whether BM immune cells monitor MKs via glycan-lectin receptors, including Siglecs and Sia interactions, to control platelet production is unclear. To investigate the role of the TF-antigen in thrombopoiesis, we generated St3gal1MK-KO mice (Pf4-Cre) that display increased TF-antigen specifically in megakaryocytes (MK) and platelets. St3gal1MK-KO mice developed significant thrombocytopenia, but had normal platelet half-life, suggesting that the TF-antigen affected BM thrombopoiesis. In vitro MK maturation and proplatelet production from primary ST3Gal1MK-KO mouse BM cells were also normal, pointing to extrinsic factors in the BM environment affecting thrombopoiesis. Platelet counts of St3gal1MK-KO mice were restored to wild-type levels by 1) crossing St3gal1MK-KO mice with Jak3KO mice that have impaired of lymphoid cell development, 2) by treatment with anti-inflammatory dexamethasone, and 3) treatment with a depleting anti-CD4 antibody. Immunofluorescence staining of the St3gal1MK-KO BM revealed proplatelet structures positive for GPIba+ and the TF-antigen, being infiltrated by mononuclear cells resembling lymphocytes. We speculated that immune cells surveil megakaryocytes to control thrombopoiesis. Bulk RNAseq of CD4+ cells in St3gal1MK-KO BM confirmed a population bias for Type I interferon (IFN-I)-releasing pDCs, a cell type regulated by unique sialic acid binding lectins (Siglecs). Inhibition of IFN-I activity, by a blocking receptor antibody improved platelet counts in St3gal1MK-KO mice. Co-cultures of pDCs with MKs show inhibited pro-platelet formation when TF-antigen is present on MKs with elevated IFN-I levels. Gene set enrichment analysis of BM pDCs single cell RNASeq (scRNAseq) data further confirmed that TF-antigen exposure by MKs up-regulates IFN-I transcripts. scRNAseq also reveals a new population of immune cells with pDC transcript signature and concomitant upregulation of immunoglobulin re-arrangement gene transcripts Igkc and Ighm. In conclusion, the data shows that recognition of aberrant MK sialylation by pDCs regulates thrombopoiesis through IFN-I secretion. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhuoyue Li ◽  
Kayleen J. McCafferty ◽  
Robert L. Judd

Hydroxycarboxylic acid receptor 2 (HCA2) is vital for sensing intermediates of metabolism, including β-hydroxybutyrate and butyrate. It also regulates profound anti-inflammatory effects in various tissues, indicating that HCA2 may serve as an essential therapeutic target for mediating inflammation-associated diseases. Butyrate and niacin, endogenous and exogenous ligands of HCA2, have been reported to play an essential role in maintaining intestinal homeostasis. HCA2, predominantly expressed in diverse immune cells, is also present in intestinal epithelial cells (IECs), where it regulates the intricate communication network between diet, microbiota, and immune cells. This review summarizes the physiological role of HCA2 in intestinal homeostasis and its pathological role in intestinal inflammation and cancer.


2019 ◽  
Author(s):  
Chunsheng Ruan ◽  
Linlin Sun ◽  
Alexandra Kroshilina ◽  
Lien Beckers ◽  
Philip L. De Jager ◽  
...  

AbstractMicroglia are resident immune cells of the central nervous system (CNS). The exact role of microglia in the physiopathology of CNS disorders is not clear due to lack of tools to discriminate between CNS resident and infiltrated innate immune cells. Here, we present a novel reporter mouse model targeting a microglia-specific marker (TMEM119) for studying the function of microglia in health and disease. By placing a reporter cassette (GSG-3xFlag-P2A-tdTomato) between the coding sequence of exon 2 and 3’UTR of the Tmem119 gene using CRISPR/Cas9 technology, we generated a Tmem119-tdTomato knock-in mouse strain. Gene expression assay showed no difference of endogenous Tmem119 mRNA level in the CNS of Tmem119tdTomato/+ relative to control Wild-type mice. The cells expressing tdTomato-were recognized by immunofluorescence staining using commercially available anti-TMEM119 antibodies. Using immunofluorescence and flow cytometry techniques, tdTomato+ cells were detected throughout the CNS, but not in peripheral tissues of adult Tmem119tdTomato/+ mice. In addition, aging does not seem to influence TMEM119 expression as tdTomato+ cells were detectable in the CNS of older mice (300 and 540 days old). Further immunofluorescence characterization shows that the tdTomato+ cells were highly colocalized with Iba1+ cells (microglia and macrophages) in the brain, but not with NeuN- (neurons), GFAP- (astrocytes) or Olig2- (oligodendrocytes) labeled cells. Moreover, flow cytometry analysis of brain tissues of adult mice demonstrates that the majority of microglial CD45lowCD11b+ cells (96.6%) are tdTomato positive. Functionally, using a laser-induced injury model, we measured time-lapse activation of tdTomato-labeled microglia by transcranial two-photon microscopy in live Tmem119tdTomato/+ mice. Taken together, the Tmem119-tdTomato reporter mouse model will serve as a valuable tool to specifically study the role of microglia in health and disease.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3849-3849
Author(s):  
Lawrence L Horstman ◽  
Jacob Esquenazi ◽  
Wenche Jy ◽  
Yeon-Soong Ahn

Abstract INTRODUCTION. Cell-derived microparticles (MP) such as from platelets (PMP), endothelia (EMP) and leukocytes (LMP) are increasingly recognized as useful biomarker and important mediators of thrombosis and inflammation. However, little attention has been paid to the possible role of MP from RBC (RMP) in vascular disorders. RMP were identified by glycophorin (GPH) in flow cytometry in most studies. We reported heterogeneity of RMP in size and phenotypes and that GPH is expressed predominately in larger RMP, not in smaller RMP and that GPH+ RMP are more active than GPH- RMP in thrombin generation. Since acetylcholinesterase (AChE) activity has been measured on RMP, and was recently proposed as a marker of some inflammatory states, we investigated AChE activity of RMP compared to platelet-derived MP (PMP). AChE of PMP has not previously been reported. METHODS. RMP were prepared from intact washed RBC at 18% Ht exposed to calcium ionophore (4uM) in presence of calcium (2mM) for 30 min. PMP were prepared from 20 mL citrated blood, and exposing the platelet-rich plasma to 1 uM calcium ionophore (without added Ca2+) and collagen, 4ug/mL, for 20 min. AChE assay was based on Ellman’s method and reagent (DTNB), run in 96-well plates, 300uL. Substrate was acetylthiocholine iodide (1 mM f.c.). DTNB was used at 0.67 mM f.c. Tests were run +/− quinidine (Q) (1.2 uM) and some tests were in presence of saponin 0.01%. Q is known to inhibit AChE of plasma but RBC activity is insensitive. Activity is expressed in umols substrate cleaved /min per 108 MP, with provisos below. Flow cytometry using FITC labeled lectin, Ulex europaeus (Ulex) was used to quantitate RMP and PMP. RESULTS. As expected, Q inhibited AChE in plasma by >90% but not AChE of RMP. On contrary, RMP were consistently stimulated by Q, up to 150% activity +Q; some preparations of PMP were also stimulated. Saponin, which has been used in assay of RBC AChE, had little effect on PMP or RMP activity. In 12 experiments, AChE of PMP exhibited marked concentration-dependence. The apparent activity per mL of suspension was greater with lesser volumes, by as much as 3-fold between 2.5uL and 20uL added. This could not be explained by substrate inhibition since the effect varied in different preparations, was absent in particle-free plasma, and did not diminish in low substrate. This suggests the presence of a natural inhibitor. Calculation of specific activity of the MP was complicated by the dependence of apparent activity on volume assayed. However, when equal dilutions were compared, a representative experiment showed RMP had about 6-fold greater activity than PMP per 108 MP: 36.0 vs. 5.88 for 2.5uL suspension; and 29.0 vs. 3.9 for 20 uL assayed, in units above. CONCLUSIONS / DISCUSSION. The AChE activity of RMP is about 6-fold greater than PMP. Weaker activity on PMP is possibly attributed to a previously unreported natural inhibitor. Blood AChE activity has been shown to reflect inflammatory states. Since AChE is a GPI-anchored protein, it is preferentially depleted from cells on the MP shed off. Assay of this activity in patient cell-free plasma, +/− Q, may be a useful biomarker. It is well known that hemolytic anemia, where RMP are elevated, is often associated with thrombotic complications, whereas ITP, where PMP are frequently elevated, rarely is. Further study to characterize AChE in RMP and other MP, and to clarify the physiological role of MP- and cell-associated AChE in thrombosis, inflammation, and cardiovascular disease is in progress.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1125 ◽  
Author(s):  
Shoib Sarwar Siddiqui ◽  
Rachel Matar ◽  
Maxime Merheb ◽  
Rawad Hodeify ◽  
Cijo George Vazhappilly ◽  
...  

Siglecs (Sialic acid-binding immunoglobulin-type lectins) are a I-type lectin that typically binds sialic acid. Siglecs are predominantly expressed in immune cells and generate activating or inhibitory signals. They are also shown to be expressed on the surface of cells in the nervous system and have been shown to play central roles in neuroinflammation. There has been a plethora of reviews outlining the studies pertaining to Siglecs in immune cells. However, this review aims to compile the articles on the role of Siglecs in brain function and neurological disorders. In humans, the most abundant Siglecs are CD33 (Siglec-3), Siglec-4 (myelin-associated glycoprotein/MAG), and Siglec-11, Whereas in mice the most abundant are Siglec-1 (sialoadhesin), Siglec-2 (CD22), Siglec-E, Siglec-F, and Siglec-H. This review is divided into three parts. Firstly, we discuss the general biological aspects of Siglecs that are expressed in nervous tissue. Secondly, we discuss about the role of Siglecs in brain function and molecular mechanism for their function. Finally, we collate the available information on Siglecs and neurological disorders. It is intriguing to study this family of proteins in neurological disorders because they carry immunoinhibitory and immunoactivating motifs that can be vital in neuroinflammation.


Open Biology ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 200309
Author(s):  
Sonia S. Elder ◽  
Elaine Emmerson

Over the last decade, our understanding of the physiological role of senescent cells has drastically evolved, from merely indicators of cellular stress and ageing to having a central role in regeneration and repair. Increasingly, studies have identified senescent cells and the senescence-associated secretory phenotype (SASP) as being critical in the regenerative process following injury; however, the timing and context at which the senescence programme is activated can lead to distinct outcomes. For example, a transient induction of senescent cells followed by rapid clearance at the early stages following injury promotes repair, while the long-term accumulation of senescent cells impairs tissue function and can lead to organ failure. A key role of the SASP is the recruitment of immune cells to the site of injury and the subsequent elimination of senescent cells. Among these cell types are macrophages, which have well-documented regulatory roles in all stages of regeneration and repair. However, while the role of senescent cells and macrophages in this process is starting to be explored, the specific interactions between these cell types and how these are important in the different stages of injury/reparative response still require further investigation. In this review, we consider the current literature regarding the interaction of these cell types, how their cooperation is important for regeneration and repair, and what questions remain to be answered to advance the field.


Sign in / Sign up

Export Citation Format

Share Document