scholarly journals Siglecs in Brain Function and Neurological Disorders

Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1125 ◽  
Author(s):  
Shoib Sarwar Siddiqui ◽  
Rachel Matar ◽  
Maxime Merheb ◽  
Rawad Hodeify ◽  
Cijo George Vazhappilly ◽  
...  

Siglecs (Sialic acid-binding immunoglobulin-type lectins) are a I-type lectin that typically binds sialic acid. Siglecs are predominantly expressed in immune cells and generate activating or inhibitory signals. They are also shown to be expressed on the surface of cells in the nervous system and have been shown to play central roles in neuroinflammation. There has been a plethora of reviews outlining the studies pertaining to Siglecs in immune cells. However, this review aims to compile the articles on the role of Siglecs in brain function and neurological disorders. In humans, the most abundant Siglecs are CD33 (Siglec-3), Siglec-4 (myelin-associated glycoprotein/MAG), and Siglec-11, Whereas in mice the most abundant are Siglec-1 (sialoadhesin), Siglec-2 (CD22), Siglec-E, Siglec-F, and Siglec-H. This review is divided into three parts. Firstly, we discuss the general biological aspects of Siglecs that are expressed in nervous tissue. Secondly, we discuss about the role of Siglecs in brain function and molecular mechanism for their function. Finally, we collate the available information on Siglecs and neurological disorders. It is intriguing to study this family of proteins in neurological disorders because they carry immunoinhibitory and immunoactivating motifs that can be vital in neuroinflammation.

2021 ◽  
Vol 5 (2.1) ◽  
pp. 51
Author(s):  
Ling Cao ◽  
Xiaoliang Yuan

Sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) is a receptor that expresses on the surface of immune cells. It plays an important role in the body’s immune response. Increased expression of Siglec-9 has been reported in infectious diseases, autoimmune diseases and cancer. Pathogenic microorganism and tumor cells can inhibit the recognition and killing of immune cells by upregulating their own specific sialic acid and binding with Siglec-9 on the surface of host immune cells, and suppress the release of pro-inflammatory cytokines and promote the release of anti-inflammatory cytokines, eventually leading to immunosuppression, tumor immune escape and the like. However, the immunosuppressive function of Siglec-9 may be advantageous for diseases such as neutrophil asthma and autoimmune diseases. Therefore, further research on the mechanism of action of Siglec-9 is of great significance.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 12-13
Author(s):  
Melissa M. Lee-Sundlov ◽  
Robert Burns ◽  
Renata Grozovsky ◽  
Silvia Giannini ◽  
Leonardo Rivadeneyra ◽  
...  

The Thomsen-Friedenreich antigen (TF-antigen) occurs during exposure of the underlying Core-1 disaccharide (Gal-beta(1,3)GalNAc) through the loss of its capping sialic acid (Sia). Exposure of the cryptic TF-antigen occurs during inflammation, during acute infections with influenza viruses or bacteria, in malignancies, and is associated with thrombocytopenia. Exposure of the TF-antigen on circulating blood cells, including platelets and red blood cells (RBC), can lead to severe thrombocytopenia or hemolysis in hemolytic uremic syndrome and other immune diseases. Recent data suggest that altered Sia may cause platelet destruction because treatment with the sialidase inhibitor Tamiflu increases platelet count in healthy and thrombocytopenic patients. In humans, genetic mutations involving Sia synthesis and transport, and atypical cell surface sialylation, unrelated to any genetic mutation, are associated with reduced platelet count, supporting the role of Sia in regulating platelet count. Immune cells, including classical dendritic cells (cDCs), plasmacytoid dendritic cells (pDCs), and subsets of T cells (CD8+, CD4+, and Treg cells) can also affect immune thrombocytopenia pathogenesis. Like many other immune cells, cDCs, and pDCs express Siglecs (sialic-acid-binding immunoglobulin-like lectins), which often contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that act as immunosuppressors. Whether BM immune cells monitor MKs via glycan-lectin receptors, including Siglecs and Sia interactions, to control platelet production is unclear. To investigate the role of the TF-antigen in thrombopoiesis, we generated St3gal1MK-KO mice (Pf4-Cre) that display increased TF-antigen specifically in megakaryocytes (MK) and platelets. St3gal1MK-KO mice developed significant thrombocytopenia, but had normal platelet half-life, suggesting that the TF-antigen affected BM thrombopoiesis. In vitro MK maturation and proplatelet production from primary ST3Gal1MK-KO mouse BM cells were also normal, pointing to extrinsic factors in the BM environment affecting thrombopoiesis. Platelet counts of St3gal1MK-KO mice were restored to wild-type levels by 1) crossing St3gal1MK-KO mice with Jak3KO mice that have impaired of lymphoid cell development, 2) by treatment with anti-inflammatory dexamethasone, and 3) treatment with a depleting anti-CD4 antibody. Immunofluorescence staining of the St3gal1MK-KO BM revealed proplatelet structures positive for GPIba+ and the TF-antigen, being infiltrated by mononuclear cells resembling lymphocytes. We speculated that immune cells surveil megakaryocytes to control thrombopoiesis. Bulk RNAseq of CD4+ cells in St3gal1MK-KO BM confirmed a population bias for Type I interferon (IFN-I)-releasing pDCs, a cell type regulated by unique sialic acid binding lectins (Siglecs). Inhibition of IFN-I activity, by a blocking receptor antibody improved platelet counts in St3gal1MK-KO mice. Co-cultures of pDCs with MKs show inhibited pro-platelet formation when TF-antigen is present on MKs with elevated IFN-I levels. Gene set enrichment analysis of BM pDCs single cell RNASeq (scRNAseq) data further confirmed that TF-antigen exposure by MKs up-regulates IFN-I transcripts. scRNAseq also reveals a new population of immune cells with pDC transcript signature and concomitant upregulation of immunoglobulin re-arrangement gene transcripts Igkc and Ighm. In conclusion, the data shows that recognition of aberrant MK sialylation by pDCs regulates thrombopoiesis through IFN-I secretion. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 19 (7) ◽  
pp. 509-526
Author(s):  
Qin Huang ◽  
Fang Yu ◽  
Di Liao ◽  
Jian Xia

: Recent studies implicate microbiota-brain communication as an essential factor for physiology and pathophysiology in brain function and neurodevelopment. One of the pivotal mechanisms about gut to brain communication is through the regulation and interaction of gut microbiota on the host immune system. In this review, we will discuss the role of microbiota-immune systeminteractions in human neurological disorders. The characteristic features in the development of neurological diseases include gut dysbiosis, the disturbed intestinal/Blood-Brain Barrier (BBB) permeability, the activated inflammatory response, and the changed microbial metabolites. Neurological disorders contribute to gut dysbiosis and some relevant metabolites in a top-down way. In turn, the activated immune system induced by the change of gut microbiota may deteriorate the development of neurological diseases through the disturbed gut/BBB barrier in a down-top way. Understanding the characterization and identification of microbiome-immune- brain signaling pathways will help us to yield novel therapeutic strategies by targeting the gut microbiome in neurological disease.


Author(s):  
Xiao-Lan Wang ◽  
Lianjian Li

The circadian clock regulates numerous key physiological processes and maintains cellular, tissue, and systemic homeostasis. Disruption of circadian clock machinery influences key activities involved in immune response and brain function. Moreover, Immune activation has been closely linked to neurodegeneration. Here, we review the molecular clock machinery and the diurnal variation of immune activity. We summarize the circadian control of immunity in both central and peripheral immune cells, as well as the circadian regulation of brain cells that are implicated in neurodegeneration. We explore the important role of systemic inflammation on neurodegeneration. The circadian clock modulates cellular metabolism, which could be a mechanism underlying circadian control. We also discuss the circadian interventions implicated in inflammation and neurodegeneration. Targeting circadian clocks could be a potential strategy for the prevention and treatment of inflammation and neurodegenerative diseases.


2009 ◽  
Vol 83 (8) ◽  
pp. 3754-3761 ◽  
Author(s):  
Li Qi ◽  
John C. Kash ◽  
Vivien G. Dugan ◽  
Ruixue Wang ◽  
Guozhong Jin ◽  
...  

ABSTRACT The 1918 influenza pandemic caused more than 40 million deaths and likely resulted from the introduction and adaptation of a novel avian-like virus. Influenza A virus hemagglutinins are important in host switching and virulence. Avian-adapted influenza virus hemagglutinins bind sialic acid receptors linked via α2-3 glycosidic bonds, while human-adapted hemagglutinins bind α2-6 receptors. Sequence analysis of 1918 isolates showed hemagglutinin genes with α2-6 or mixed α2-6/α2-3 binding. To characterize the role of the sialic acid binding specificity of the 1918 hemagglutinin, we evaluated in mice chimeric influenza viruses expressing wild-type and mutant hemagglutinin genes from avian and 1918 strains with differing receptor specificities. Viruses expressing 1918 hemagglutinin possessing either α2-6, α2-3, or α2-3/α2-6 sialic acid specificity were fatal to mice, with similar pathology and cellular tropism. Changing α2-3 to α2-6 binding specificity did not increase the lethality of an avian-adapted hemagglutinin. Thus, the 1918 hemagglutinin contains murine virulence determinants independent of receptor binding specificity.


Author(s):  
Tainá Cavalcante ◽  
Mariana Medina Medeiros ◽  
Simon Ngao Mule ◽  
Giuseppe Palmisano ◽  
Beatriz Simonsen Stolf

Carbohydrates or glycans are ubiquitous components of the cell surface which play crucial biological and structural roles. Sialic acids (Sias) are nine-carbon atoms sugars usually present as terminal residues of glycoproteins and glycolipids on the cell surface or secreted. They have important roles in cellular communication and also in infection and survival of pathogens. More than 20 pathogens can synthesize or capture Sias from their hosts and incorporate them into their own glycoconjugates and derivatives. Sialylation of pathogens’ glycoconjugates may be crucial for survival inside the host for numerous reasons. The role of Sias in protozoa such as Trypanosoma and Leishmania was demonstrated in previous studies. This review highlights the importance of Sias in several pathogenic infections, focusing on Leishmania. We describe in detail the contributions of Sias, Siglecs (sialic acid binding Ig-like lectins) and Neuraminidase 1 (NEU 1) in the course of Leishmania infection. A detailed view on the structural and functional diversity of Leishmania-related Sias and host-cell receptors will be provided, as well as the results of functional studies performed with different Leishmania species.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2691
Author(s):  
María Pia Lenza ◽  
Unai Atxabal ◽  
Iker Oyenarte ◽  
Jesús Jiménez-Barbero ◽  
June Ereño-Orbea

The sialic acid-binding immunoglobulin-type of lectins (Siglecs) are receptors that recognize sialic acid-containing glycans. In the majority of the cases, Siglecs are expressed on immune cells and play a critical role in regulating immune cell signaling. Over the years, it has been shown that the sialic acid-Siglec axis participates in immunological homeostasis, and that any imbalance can trigger different pathologies, such as autoimmune diseases or cancer. For all this, different therapeutics have been developed that bind to Siglecs, either based on antibodies or being smaller molecules. In this review, we briefly introduce the Siglec family and we compile a description of glycan-based molecules and antibody-based therapies (including CAR-T and bispecific antibodies) that have been designed to therapeutically targeting Siglecs.


Sign in / Sign up

Export Citation Format

Share Document