scholarly journals Immune cell infiltration characteristics and related core genes of bioinformatic analysis in multiple sclerosis

Author(s):  
jingyu zhao ◽  
Jianyong Zheng ◽  
Qun Wang ◽  
Qian Li ◽  
Nan zhang

Abstract Background Introduction Multiple sclerosis(MS) is a common complication of uncontrolled or excessive neuroinflammation and autoimmunity disease. Advances in high-throughput technologies and available bioinformatics tools make it possible to evaluate different expressions in the whole genome instead of focusing on a limited number of genes. MethodsMaterials and methods Two public available databases GSE81279 and GSE21942 of multiple sclerosis samples were downloaded analyzed by CIBERSORT. Gene Ontology (GO) and KEGG pathway analysis based on GSEA was performed by cluster profile software to reveal the regulatory relations among genes and provided a systematic understanding of the functional differentially expressed genes at the transcriptional level.GSE81279 was used to validate the association between core genes and clinical information. ResultsFor immune cells, T-cell gamma delta and monocyte showed a trend toward reduction. The connection between the most prominent GO terms showed HBB, GATA2, NAA35, TCL1A, SECISBP2L, CLC, AGPAT5, CCR3, LTF, MALAT1, MS4A3 were significantly differentially expressed in MS. Gene set enrichment result was presented CDKN1A, DDB2, MME HMGN1, XPC, RELA for subsequent analysis.GSE81279 showed five types of immune cells revealed important links with MS. GSEA and layered KEGG analyses revealed that enrichment of immune response-related in primary immunodeficiency, it also consistent with previous studies. We got 10 genes, including HLA-DR, IL7R, HBB, TNFRSF1A, CYP27B1, NR1H3, IL2RA, TNFR1, BAFF, and CYP2R1 had close connections to clinical features. ConclusionsOur study identifies immune cell infiltration with microarray data of the plasma in MS by using CIBERSORT analysis, we also provide novel information for further study of genes of multiple sclerosis.

2021 ◽  
Author(s):  
Qi Zhou ◽  
Xin Xiong ◽  
Min Tang ◽  
Yingqing Lei ◽  
Hongbin Lv

Abstract BackgroundDiabetic retinopathy (DR), a severe complication of diabetes mellitus (DM), is a global social and economic burden. However, the pathological mechanisms mediating DR are not well-understood. This study aimed to identify differentially methylated and differentially expressed hub genes (DMGs and DEGs, respectively) and associated signaling pathways, and to evaluate immune cell infiltration involved in DR. MethodsTwo publicly available datasets were downloaded from the Gene Expression Omnibus database. Transcriptome and epigenome microarray data and multi-component weighted gene coexpression network analysis (WGCNA) were utilized to determine hub genes within DR. One dataset was utilized to screen DEGs and to further explore their potential biological functions using functional annotation analysis. A protein-protein interaction network was constructed. Gene set enrichment and variation analyses (GSVA and GSEA, respectively) were utilized to identify the potential mechanisms mediating the function of hub genes in DR. Infiltrating immune cells were evaluated in one dataset using CIBERSORT. The Connectivity Map (CMap) database was used to predict potential therapeutic agents. ResultsIn total, 673 DEGs (151 upregulated and 522 downregulated genes) were detected. Gene expression was significantly enriched in the extracellular matrix and sensory organ development, extracellular matrix organization, and glial cell differentiation pathways. Through WGCNA, one module was found to be significantly related with DR (r=0.34, P =0.002), and 979 hub genes were identified. By comparing DMGs, DEGs, and genes in WGCNA, we identified eight hub genes in DR ( AKAP13, BOC, ACSS1, ARNT2, TGFB2, LHFPL2, GFPT2, TNFRSF1A ), which were significantly enriched in critical pathways involving coagulation, angiogenesis, TGF-β, and TNF-α-NF-κB signaling via GSVA and GSEA. Immune cell infiltration analysis revealed that activated natural killer cells, M0 macrophages, resting mast cells, and CD8 + T cells may be involved in DR. ARNT2, TGFB2, LHFPL2 , and AKAP13 expression were correlated with immune cell processes, and ZG-10, JNK-9L, chromomycin-a3, and calyculin were identified as potential drugs against DR. Finally, TNFRSF1A , GFPT2 , and LHFPL2 expression levels were consistent with the bioinformatic analysis. ConclusionsOur results are informative with respect to correlations between differentially methylated and expressed hub genes and immune cell infiltration in DR, providing new insight towards DR drug development and treatment.


2021 ◽  
Author(s):  
Zhihao Chen ◽  
Liubing Li ◽  
Ziyuan Li ◽  
Xi Wang ◽  
Mingxiao Han ◽  
...  

Abstract Background: The potential functions of circular RNAs (circRNAs) and micro RNAs (miRNAs) in osteosarcoma (OS) have not been fully elucidated. Especially, the behavior and mechanism of immune responses in OS development and progression have not been fully demonstrated. It was reported that circRNAs and miRNAs can serve as biomarkers for the diagnosis, prognosis, and therapy of many cancers. This study aimed to identify novel key serum biomarkers to diagnose and predict metastasis of OS based on the analysis of immune cell infiltration characteristics.Methods: The differentially-expressed circRNAs (DEcircRNAs), differentially-expressed miRNAs (DEmiRNAs),and differentially-expressed mRNAs (DEmRNAs) of human OS were investigated based on the microarray data downloaded from Gene Expression Omnibus (GEO) datasets. Then, we analyzed immune characteristics pattern of tumor-infiltrating immune cells in OS. On this basis, we identified statistically-significant transcription factors and performed pathway enrichment analysis. Subsequently, we constructed protein-protein interaction (PPI) and competitive endogenous RNA (ceRNA) networks. Moreover, the biological characteristic of targets in ceRNA networks was proposed. Finally, the expression and diagnostic capability of these potential biomarkers from ceRNA network were confirmed by RT-qPCR in patients’ serum.Results: Seven differentially-expressed circRNAs (DEcircRNAs), 166 differentially-expressed miRNAs (DEmiRNAs) and 175 differentially-expressed mRNAs (DEmRNAs) were identified in total. The highest level of infiltration in OS patients were M0 macrophages, M2 macrophages and CD8+ T cells. Further, M0 macrophages and CD8+ T cells were showed the largest negative correlation coefficients. These significant immune characteristics pattern of tumor-infiltrating immune cells were revealed by the principal component analysis in OS. Moreover, we found 185 statistically-significant transcription factors in which the main significant molecules show the potential in immunotherapy of OS. Hsa-circ-0010220, hsa-miR-326, hsa-miR-338-3p, and FAM98A from ceRNA networks associated with immune cell infiltration were confirmed as the potential novel biomarkers for OS diagnosis, of which FAM98A could distinguish and predict metastasis. Most importantly, a novel diagnostic model consisting of the four promising biomarkers (hsa-circ-0010220, hsa-miR-326, hsa-miR-338-3p, and FAM98A) was highlighted with 0.928 AUC value.Conclusions: In summary, the potenial serum biomarkers to diagnose and predict metastasis of OS based on the analysis of immune cell infiltration characteristics were found, and a novel diagnostic model consisting of four promising serum biomarkers was proposed firstly. These results provided a new perspective for the immunotherapy of OS.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rongguo Yu ◽  
Jiayu Zhang ◽  
Youguang Zhuo ◽  
Xu Hong ◽  
Jie Ye ◽  
...  

BackgroundRheumatoid arthritis (RA) refers to an autoimmune rheumatic disease that imposes a huge burden on patients and society. Early RA diagnosis is critical to preventing disease progression and selecting optimal therapeutic strategies more effectively. In the present study, the aim was at examining RA’s diagnostic signatures and the effect of immune cell infiltration in this pathology.MethodsGene Expression Omnibus (GEO) database provided three datasets of gene expressions. Firstly, this study adopted R software for identifying differentially expressed genes (DEGs) and conducting functional correlation analyses. Subsequently, we integrated bioinformatic analysis and machine-learning strategies for screening and determining RA’s diagnostic signatures and further verify by qRT-PCR. The diagnostic values were assessed through receiver operating characteristic (ROC) curves. Moreover, this study employed cell-type identification by estimating relative subsets of RNA transcript (CIBERSORT) website for assessing the inflammatory state of RA, and an investigation was conducted on the relationship of diagnostic signatures and infiltrating immune cells.ResultsOn the whole, 54 robust DEGs received the recognition. Lymphocyte-specific protein 1 (LSP1), Granulysin (GNLY), and Mesenchymal homobox 2 (MEOX2) (AUC = 0.955) were regarded as RA’s diagnostic markers and showed their statistically significant difference by qRT-PCR. As indicated from the immune cell infiltration analysis, resting NK cells, neutrophils, activated NK cells, T cells CD8, memory B cells, and M0 macrophages may be involved in the development of RA. Additionally, all diagnostic signatures might be different degrees of correlation with immune cells.ConclusionsIn conclusion, LSP1, GNLY, and MEOX2 are likely to be available in terms of diagnosing and treating RA, and the infiltration of immune cells mentioned above may critically impact RA development and occurrence.


2020 ◽  
Author(s):  
Yuzhi Wang ◽  
Yu Zou ◽  
Yi Zhang ◽  
Chengwen Li

The immune system and the tumor interact closely during tumor development. Aberrantly-expressed long non-coding RNAs (lncRNAs) may be potentially applied as diagnostic and prognostic markers for gastric cancer (GC). At present, the diagnosis and treatment of GC patients remain a formidable clinical challenge. This study aimed to build a risk scoring system to improve the prognosis of GC patients. In this study, ssGSEA was used to evaluate the infiltration of immune cells in GC tumor tissue samples, and the samples were split into a high immune cell infiltration group and a low immune cell infiltration group. 1262 differentially expressed lncRNAs between the high immune cell infiltration group and the low immune cell infiltration group. 3204 differentially expressed lncRNAs between GC tumor tissues and paracancerous tissues were identified. Then, 621 immune-related lncRNAs were screened using a Venn analysis based on the above results, and 85 prognostic lncRNAs were identified using a univariate Cox analysis. We constructed a prognostic signature using LASSO analysis and evaluated the predictive performance of the signature using ROC analysis. GO and KEGG enrichment analyses were performed on the lncRNAs using the R package, “clusterProfiler.” The TIMER online database was used to analyze correlations between the risk score and the abundances of the six types of immune cells. In conclusion, our study found that specific immune-related lncRNAs were clinically significant. These lncRNAs were used to construct a reliable prognostic signature and analyzed immune infiltrates, which may assist clinicians in developing individualized treatment strategies for GC patients.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Li Zhang ◽  
Yunlong Yang ◽  
Dechun Geng ◽  
Yonghua Wu

Background. Osteoporosis is characterized by low bone mass, deterioration of bone tissue structure, and susceptibility to fracture. New and more suitable therapeutic targets need to be discovered. Methods. We collected osteoporosis-related datasets (GSE56815, GSE99624, and GSE63446). The methylation markers were obtained by differential analysis. Degree, DMNC, MCC, and MNC plug-ins were used to screen the important methylation markers in PPI network, then enrichment analysis was performed. ROC curve was used to evaluate the diagnostic effect of osteoporosis. In addition, we evaluated the difference in immune cell infiltration between osteoporotic patients and control by ssGSEA. Finally, differential miRNAs in osteoporosis were used to predict the regulators of key methylation markers. Results. A total of 2351 differentially expressed genes and 5246 differentially methylated positions were obtained between osteoporotic patients and controls. We identified 19 methylation markers by PPI network. They were mainly involved in biological functions and signaling pathways such as apoptosis and immune inflammation. HIST1H3G, MAP3K5, NOP2, OXA1L, and ZFPM2 with higher AUC values were considered key methylation markers. There were significant differences in immune cell infiltration between osteoporotic patients and controls, especially dendritic cells and natural killer cells. The correlation between MAP3K5 and immune cells was high, and its differential expression was also validated by other two datasets. In addition, NOP2 was predicted to be regulated by differentially expressed hsa-miR-3130-5p. Conclusion. Our efforts aim to provide new methylation markers as therapeutic targets for osteoporosis to better treat osteoporosis in the future.


2020 ◽  
Author(s):  
Jukun Song ◽  
Song He ◽  
Wei Wang ◽  
Jiaming Su ◽  
Dongbo Yuan ◽  
...  

Abstract Background Immune infiltration of Prostate cancer (PCa) was highly related to clinical outcomes. However, previous works failed to elucidate the diversity of different immune cell types that make up the function of the immune response system. The aim of the study was to uncover the composition of TIICs in PCa utilizing the CIBERSORT algorithm and further reveal the molecular characteristics of PCa subtypes. Method In the present work, we employed the CIBERSORT method to evaluate the relative proportions of immune cell profiling in PCa and adjacent samples, normal samples. We analyzed the correlation between immune cell infiltration and clinical information. The tumor-infiltrating immune cells of the TCGA PCa cohort were analyzed for the first time. The fractions of 22 immune cell types were imputed to determine the correlation between each immune cell subpopulation and clinical feature. Three types of molecular classification were identified via R-package of “CancerSubtypes”. The functional enrichment was analyzed in each subtype. The submap and TIDE algorithm were used to predict the clinical response to immune checkpoint blockade, and GDSC was employed to screen chemotherapeutic targets for the potential treatment of PCa. Results In current work, we utilized the CIBERSORT algorithm to assess the relative proportions of immune cell profiling in PCa and adjacent samples, normal samples. We investigated the correlation between immune cell infiltration and clinical data. The tumor-infiltrating immune cells in the TCGA PCa cohort were analyzed. The 22 immune cells were also calculated to determine the correlation between each immune cell subpopulation and survival and response to chemotherapy. Three types of molecular classification were identified. Each subtype has specific molecular and clinical characteristics. Meanwhile, Cluster I is defined as advanced PCa, and is more likely to respond to immunotherapy. Conclusions Our results demonstrated that differences in immune response may be important drivers of PCa progression and response to treatment. The deconvolution algorithm of gene expression microarray data by CIBERSOFT provides useful information about the immune cell composition of PCa patients. In addition, we have found a subtype of immunopositive PCa subtype and will help to explore the reasons for the poor effect of PCa on immunotherapy, and it is expected that immunotherapy will be used to guide the individualized management and treatment of PCa patients.


2021 ◽  
Vol 11 ◽  
Author(s):  
Young-Sil An ◽  
Se-Hyuk Kim ◽  
Tae Hoon Roh ◽  
So Hyun Park ◽  
Tae-Gyu Kim ◽  
...  

BackgroundThe purpose of this study was to investigate the correlation between 18F-fluorodeoxyglucose (FDG) uptake and infiltrating immune cells in metastatic brain lesions.MethodsThis retrospective study included 34 patients with metastatic brain lesions who underwent brain 18F-FDG positron emission tomography (PET)/computed tomography (CT) followed by surgery. 18F-FDG uptake ratio was calculated by dividing the standardized uptake value (SUV) of the metastatic brain lesion by the contralateral normal white matter uptake value. We investigated the clinicopathological characteristics of the patients and analyzed the correlation between 18F-FDG uptake and infiltration of various immune cells. In addition, we evaluated immune-expression levels of glucose transporter 1 (GLUT1), hexokinase 2 (HK2), and Ki-67 in metastatic brain lesions.ResultsThe degree of 18F-FDG uptake of metastatic brain lesions was not significantly correlated with clinical parameters. There was no significant relationship between the 18F-FDG uptake and degree of immune cell infiltration in brain metastasis. Furthermore, other markers, such as GLUT1, HK2, and Ki-67, were not correlated with degree of 18F-FDG uptake. In metastatic brain lesions that originated from breast cancer, a higher degree of 18F-FDG uptake was observed in those with high expression of CD68.ConclusionsIn metastatic brain lesions, the degree of 18F-FDG uptake was not significantly associated with infiltration of immune cells. The 18F-FDG uptake of metastatic brain lesions from breast cancer, however, might be associated with macrophage activity.


2021 ◽  
Author(s):  
Rongxin Chen ◽  
Qing Han ◽  
Huale Zhang ◽  
Jianying Yan

Abstract Background Preeclampsia (PE) is a complex multisystem disease and its etiology remains unclear. The aim of this study was to identify potential immune-related diagnostic genes for PE, analyze the role of immune cell infiltration in PE, and explore the mechanism underlying PE-induced disruption of immune tolerance at the maternal-fetal interface. Methods We used the PE dataset GES25906 from Gene Expression Omnibus and immune-related genes from ImmPort database. The differentially expressed genes (DEGs) were identified using the “limma” package, and the differentially expressed immune-related genes (DEIGs) were extracted from the DEGs and immune-related genes using Venn diagrams. The potential functions of DEIGs were determined by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Furthermore, the protein–protein interaction network was obtained from the STRING database, and it was visualized using Cytoscape software. Least absolute shrinkage and selection operator logistic regression was used to verify the diagnostic markers of PE and build a predicting model. The model was validated using datasets GSE66273 and GSE75010. Finally, CIBERSORT was used to evaluate the infiltration of immune cells in PE tissues. Results Six genes (ACTG1, ENG, IFNGR1, ITGB2, NOD1, and SPP1) enriched in Th17 cell differentiation, cytokine-cytokine receptor interaction, innate immune response, and positive regulation of MAPK cascade pathways were identified, and a predicting model was built. Datasets GSE66273 and GSE75010 were used to validate the model, and the area under the curve was 0.8333 and 0.8107, respectively. Immune cell infiltration analysis revealed an increase in plasma cells and gamma delta T cells and a decrease in resting natural killer cells in the high score group according to the predictive model risk values. Conclusions We developed a risk model to predict PE and proved that immune imbalance at the maternal-fetal interface plays a key role in the pathogenesis of PE.


2021 ◽  
Author(s):  
Xiaoyan Li ◽  
Jing Zhou ◽  
Jie He

Abstract Background: Sarcoidosis (SA) is an immune disorder disease featured with granulomas formation. The work purposed to uncover potential markers for sarcoidosis (SA) diagnosis and explore how immune cell infiltration contributes to the pathogenesis of SA.Methods: Sarcoidosis GSE83456 samples and GSE42834 from Gene Expression Omnibus (GEO) were analyzed as the training and external validation sets, respectively. R statistical software was employed to uncover the differentially expressed genes (DEGs) of GSE83456. SVM algorithms and LASSO logistic regression were applied for screening and verification of the diagnostic markers for key module genes. The infiltration of immune cells in sarcoidosis patients’ blood samples was assessed by CIBERSORT. The expression of serum BATF2 and PDK4 was detected by RT-qPCR method, and the value of BATF2 and PDK4 mRNA expression in the diagnosis of pulmonary sarcoidosis was analyzed.Results: In total, 580 DEGs were identified from the key module. PDK4 (AUC=0.942) and BATF4 (AUC=0.980) were revealed as diagnostic markers of sarcoidosis. We found that monocytes, T cells regulatory (Tregs), mast cells, macrophages,NK cells, and dendritic cells may contribute to sarcoidosis development. In addition, PDK4 and BATF4 were closely associated with these immune cells. BATF2 and PDK4 were highly expressed in pulmonary sarcoidosis. BATF2 and PDK4 combined to predict the area under the ROC curve of pulmonary sarcoidosis was 0.922.Conclusions: PDK4 and BATF4 could be used as diagnostic markers of sarcoidosis, and immune cell infiltration severs an important role in sarcoidosis.


2020 ◽  
Vol 10 ◽  
Author(s):  
Zhenqing Li ◽  
Bo Ding ◽  
Jianxun Xu ◽  
Kai Mao ◽  
Pengfei Zhang ◽  
...  

Serine/threonine kinase 11 (STK11) is one member of the serine/threonine kinase family, which is involved in regulating cell polarity, apoptosis, and DNA damage repair. In lung adenocarcinoma (LUAD), it can play as one tumor suppressor and always be mutated. In this study, we aimed to assess the relevance of STK11 mutations in LUAD, in which we also studied the correlation among immune cell infiltration, drug sensitivity, and cellular processes. By performing the bioinformatics analysis of the Cancer Genome Atlas (TCGA) about LUAD patients, we found that the mutation efficiency of STK11 mutations is about 19%. Additionally, the differentially expressed gene analysis showed that there were 746 differentially expressed genes (DEGs) between LUAD patients with and without STK11 mutations. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis showed that the DEGs were enriched in various tumorigenesis signaling pathways and metabolic processes. Among these DEGs, the top ranking 21 genes were found that they were more frequently mutated in the STK11 mutation group than in the wild-type group (p-value<0.01). Finally, the LUAD patients with STK11 mutations suffered the worse immune cell infiltration levels than the LUAD patients with wild-type. The STK11 gene copy number was correlated with immune cell infiltration. Aiming to develop the therapeutic drugs, we performed Genomics of Drug Sensitivity in Cancer (GDSC) data to identify the potential therapeutic candidate and the results showed that Nutlin-3a(-) may be a sensitive drug for LUAD cases harboring STK11 mutations. The specific genes and pathways shown to be associated with LUAD cases involving STK11 mutations may serve as targets for individualized LUAD treatment.


Sign in / Sign up

Export Citation Format

Share Document