scholarly journals The Function of LINC00662/miR-340-5p/STAT3 Regulation Loop in Promoting Tumorigenesis and Development of Glioma

2020 ◽  
Author(s):  
Wei Ji ◽  
Zhengwei Li ◽  
Likun Song ◽  
Chao Cheng ◽  
Jun Sun ◽  
...  

Abstract Background: Long noncoding RNAs( lncRNAs) have been reported to be associated with tumorigenesis and development of glioma. LINC00662 has been implicated in pathogenesis of various human cancers. However, role of LINC00662 in glioma remains unknown.Methods: Bioinformatics methods were used to analysis the expression of LINC00662 in glioma. RT-qPCR was performed to examine the expression levels of LINC00662 in glioma tissues and cell lines. The effect of LINC00662 in cell proliferation and invasion was evaluated by Cell Counting Kit-8(CCK-8), clone colony formation and transwell assay. Luciferase reporter assays were performed to investigate the interaction between miR-340-5p and LINC00662, 3’UTR of STAT3. CHIP-qPCR and Luciferase reporter assays were used to demonstrate the interaction between STAT3 and the promoter region of LINC00662. Rescue assays and Tumor xenografts in nude mice were applied to verify the effect of LINC00662 in modulating miR-340-5p/ STAT3 signal pathway.Results: LINC00662 was frequently high expressed and associated with malignant phenotype of glioma. LINC00662 knockdown inhibited proliferation, invasion and glioma-genesis of glioma. Moreover, LINC00662 knockdown repressed development of glioma by inhibiting the expression and activation of STAT3 pathway. Mechanically, LINC00662 acted as a ceRNA sponging miR-340-5p to protect the expression of STAT3. More importantly, LINC00662 was one of direct target genes of STAT3.Conclusions: There was a positive regulation loop between LINC00662 and STAT3. LINC00662 might be an oncogene in glioma. Targeting LINC00662 was a potential strategy in glioma therapy.

2019 ◽  
Vol 47 (10) ◽  
pp. 5185-5193
Author(s):  
Xinyun Fang ◽  
Renchun Yan

Objective MicroRNAs (miRNAs) are non-coding RNAs that affect the expression of their target genes by binding to the 3′-untranslated region. miR-152 has been identified as a critical modulator in tumorigenesis, but its role in chordoma has not been explored. We therefore investigated the role of miR-152 in regulating chordoma cell behavior, and examined the downstream effectors of miR-152. Materials and methods We examined the expression of miR-152 in two human chordoma cell lines and in a normal human embryonic kidney cell line. We also analyzed the relationship between miR-152 and homeobox C8 ( HOXC8) by bioinformatics analysis and luciferase reporter assay. We determined the effects of miR-152 and HOXC8 expression on chordoma cell behavior. Results miR-152 expression was downregulated in chordoma compared with normal cells. Meanwhile, miR-152 overexpression inhibited chordoma cell proliferation and invasion. The oncogene HOXC8 was a direct target of miR-152, as shown by luciferase reporter and western blot assays. Conclusions HOXC8 acted as an effector for the suppressive role of miR-152 in chordoma, thereby providing a potential therapeutic target in patients with chordoma.


2020 ◽  
Vol 26 ◽  
Author(s):  
Yini Ma ◽  
Xiu Cao ◽  
Guojuan Shi ◽  
Tianlu Shi

: MicroRNAs (miRNAs) play a vital role in the onset and development of many diseases, including cancers. Emerging evidence shows that numerous miRNAs have the potential to be used as diagnostic biomarkers for cancers, and miRNA-based therapy may be a promising therapy for the treatment of malignant neoplasm. MicroRNA-145 (miR-145) has been considered to play certain roles in various cellular processes, such as proliferation, differentiation and apoptosis, via modulating expression of direct target genes. Recent reports show that miR-145 participates in the progression of digestive system cancers, and plays crucial and novel roles for cancer treatment. In this review, we summarize the recent knowledge concerning the function of miR-145 and its direct targets in digestive system cancers. We discuss the potential role of miR-145 as valuable biomarkers for digestive system cancers and how miR-145 regulates these digestive system cancers via different targets to explore the potential strategy of targeting miR-145.


2021 ◽  
Vol 22 (11) ◽  
pp. 5590
Author(s):  
Clément Veys ◽  
Abderrahim Benmoussa ◽  
Romain Contentin ◽  
Amandine Duchemin ◽  
Emilie Brotin ◽  
...  

Chondrosarcomas are malignant bone tumors. Their abundant cartilage-like extracellular matrix and their hypoxic microenvironment contribute to their resistance to chemotherapy and radiotherapy, and no effective therapy is currently available. MicroRNAs (miRNAs) may be an interesting alternative in the development of therapeutic options. Here, for the first time in chondrosarcoma cells, we carried out high-throughput functional screening using impedancemetry, and identified five miRNAs with potential antiproliferative or chemosensitive effects on SW1353 chondrosarcoma cells. The cytotoxic effects of miR-342-5p and miR-491-5p were confirmed on three chondrosarcoma cell lines, using functional validation under normoxia and hypoxia. Both miRNAs induced apoptosis and miR-342-5p also induced autophagy. Western blots and luciferase reporter assays identified for the first time Bcl-2 as a direct target of miR-342-5p, and also Bcl-xL as a direct target of both miR-342-5p and miR-491-5p in chondrosarcoma cells. MiR-491-5p also inhibited EGFR expression. Finally, only miR-342-5p induced cell death on a relevant 3D chondrosarcoma organoid model under hypoxia that mimics the in vivo microenvironment. Altogether, our results revealed the tumor suppressive activity of miR-342-5p, and to a lesser extent of miR-491-5p, on chondrosarcoma lines. Through this study, we also confirmed the potential of Bcl-2 family members as therapeutic targets in chondrosarcomas.


2020 ◽  
Author(s):  
Yijing Chu ◽  
Yan Zhang ◽  
Guoqiang Gao ◽  
Jun Zhou ◽  
Yang Lv ◽  
...  

Abstract Background: Human chorionic villous mesenchymal stem cells (CV-MSCs) are found to be a promising and effective treatment for tissue injury. Trophoblast dysfunction during pregnancies is significantly involved in the pathogenesis of preeclampsia (PE). This work was to understand how CV-MSCs regulated trophoblast function. Methods: In this study, we treated trophoblasts with CV-MSC-derived exosomes and RNA-seq analysis was used to understand the changes in trophoblasts. We examined the levels of TXNIP and β-catenin in trophoblasts by immunohistochemistry, western blot and qRT-PCR assays. Luciferase reporter assays and qRT-PCR assays were used to understand the role of miR135b-5p in the effects of CV-MSC-derived exosomes. The growth and invasion of trophoblasts was evaluated with the CCK-8 and transwell assays. Results: The treatment markedly enhanced the trophoblast proliferation and invasion. Furthermore, a significant decrease of TXNIP expression and inactivation of the β-catenin pathway in CV-MSCs exosomes-treated trophoblasts was observed. Consistent with these findings, TXNIP inhibition exhibited the same effect of promoting trophoblast proliferation and invasion as induced by CV-MSC-derived exosomes, also with the accompaniment of inactivation of β-catenin pathway. In addition, overexpression of TXNIP activated the β-catenin pathway in trophoblasts, and reduced the proliferation and invasion of trophoblasts. Importantly, miR135b-5p was found to be highly expressed in CV-MSC exosomes and interact with TXNIP. The miR-135b-5p overexpression significantly elevated the proliferation and invasion of trophoblasts, which could be attenuated by TXNIP overexpression. Conclusion: Our results suggest that TXNIP-dependent β-catenin pathway inactivation mediated by miR135b-5p which is delivered by CV-MSC-derived exosomes could promote the proliferation and invasion of trophoblasts.


Tumor Biology ◽  
2017 ◽  
Vol 39 (2) ◽  
pp. 101042831769431 ◽  
Author(s):  
Li Zhou ◽  
Shunai Liu ◽  
Ming Han ◽  
Shenghu Feng ◽  
Jinqiu Liang ◽  
...  

Studies have demonstrated that microRNA 185 may be a promising therapeutic target in liver cancer. However, its role in hepatocellular carcinoma is largely unknown. In this study, the proliferation of human HepG2 cells was inhibited by transfection of microRNA 185 mimics. Cell-cycle analysis revealed arrest at the G0/G1 phase. Transfection of HepG2 cells with microRNA 185 mimics significantly induced apoptosis. These data confirmed microRNA 185 as a potent cancer suppressor. We demonstrated that microRNA 185 was a compelling inducer of autophagy, for the first time. When cell autophagy was inhibited by chloroquine or 3-methyladenine, microRNA 185 induced more cell apoptosis. MicroRNA 185 acted as a cancer suppressor by regulating AKT1 expression and phosphorylation. Dual-luciferase reporter assays indicated that microRNA 185 suppressed the expression of target genes including RHEB, RICTOR, and AKT1 by directly interacting with their 3′-untranslated regions. Binding site mutations eliminated microRNA 185 responsiveness. Our findings demonstrate a new role of microRNA 185 as a key regulator of hepatocellular carcinoma via autophagy by dysregulation of AKT1 pathway.


2020 ◽  
Author(s):  
Hong Liu ◽  
Xuemei Gan ◽  
Jun Zhang ◽  
Xingdiao Zhang ◽  
Jie Xiong ◽  
...  

Abstract Background: MiR-541 acts as a tumor suppressor in some cancers. However, the role of miR-541 in regulating the chemosensitivity to cancer cells is still unclear. The aim of this study is to explore the effect of miR-541 on chemoresistance of pancreatic cancer (PCa) cells to gemcitabine-induced apoptosis.Methods: Gemcitabine-resistant Panc-1 and Capan-2 PCa cell lines (Panc-1/R and Capan-2/R) were established through long term exposure to gemcitabine. Effect of miR-541 on changing the sensitivity of Panc-1/R and Capan-2/R to gemcitabine-induced cytotoxicity was evaluated by MTT assays. Regulation of miR-541 on HAX-1 was confirmed by bioinformatics, western blot analysis and luciferase reporter assays. Cell apoptosis and mitochondrial membrane potential (MMP) was measured by flow cytometry analysis.Results: Comparison with Panc-1 and Capan-2, downregulation of miR-541 was observed in Panc-1/R and Capan-2/R cells. Overexpression of miR-541 was found to increase the cytotoxicity of gemcitabine to Panc-1/R and Capan-2/R cells. However, transfection with HAX-1 plasmid can abolish the effect of miR-541 on gemcitabine-induced cytotoxicity against Panc-1/R and Capan-2/R.Conclusion: Downregulation of miR-541 is responsible for development of gemcitabine resistance in PCa. Overexpression of miR-541 may represent a potential strategy to reverse the chemoresistance of PCa.


2020 ◽  
Author(s):  
Yu’e Han ◽  
Xing Liu ◽  
Guangling Li ◽  
Xia Ju ◽  
Zhongyi Song

Abstract Background Previous studies have shown that many long noncoding RNAs (lncRNAs) are involved in the pathogenesis of nasopharyngeal carcinoma (NPC). However, the regulatory mechanism of lncRNA SNHG6 remains unknown. Therefore, this study was design to preliminarily elucidate the role of SNHG6 in NPC. Methods The mRNA expression was detected by RT-qPCR. CCK-8, Transwell and dual luciferase reporter assays were used to investigate the function of SNHG6 in NPC. Results Upregulation of SNHG6 and downregulation of miR-944 were identified in NPC and were associated with TNM stage and distant metastasis in NPC patients. Additionally, SNHG6 acts as a molecular sponge of miR-944. More importantly, SNHG6 promoted NPC cell proliferation, migration and invasion by downregulating miR-944. Further, RGS17 was confirmed to be a direct target of miR-944. MiR-944 restrained NPC progression by targeting RGS17. Besides that, knockdown of RGS17 was found to block NPC progression. Upregulation of SNHG6 weakened the suppressive effect of RGS17 knockdown in NPC. Conclusion LncRNA SNHG6 promotes tumorigenesis of NPC by competitively binding to miR-944 with RGS17.


2021 ◽  
Author(s):  
Xiaqiong Mao ◽  
Tao Ji ◽  
Aiguo Liu ◽  
Yunqi Weng

Abstract Background Long non-coding RNAs (lncRNAs) play important regulatory roles in the initiation and progression of various cancers. However, the biological roles and the potential mechanisms of lncRNAs in gastric cancers remain unclear. Methods The expression of SNHG22 in gastric cancer was analyzed in public databases (TCGA) and validated via qRT-PCR. SNHG22 knockdown cell lines were construced, and cell proliferation and invasion were analyzed. CHIP and luciferase reporter assays were performed to clarify the transcriptional role of ELK4. RNA pull-down followed MS and RIP assays were employed to identify the interaction between SNHG22 and EZH2. Luciferase reporter assays and RIP assays were used to confirm the regulation of SNHG22 on Notch1 by sponging miR-2003-3p. Results Knockdown of SNHG22 inhibited the proliferation and invasion ability of GC cells. Moreover, we identified that the transcriptional factor, ELK4, could promote SNHG22 expression in GC cells. In addition, using RNA pull-down followed MS assay, we found that SNHG22 directly bound to EZH2 to suppress the expression of tumor suppressor genes. At the same time, SNHG22 sponged miR-200c-3p to increase Notch1 expression. Conclusions Taken together, our findings demonstrated the role of SNHG22 on promoting proliferation and invasion of GC cells. And we revealed a new regulatory mechanism of SNHG22 in GC cells. SNHG22 is a promising lncRNA biomarker for diagnosis and prognosis and a potential target for GC treatment.


Author(s):  
Caiqiang Huang ◽  
Runguang Li ◽  
Changsheng Yang ◽  
Rui Ding ◽  
Qingchu Li ◽  
...  

AbstractOsteoporosis (OP) is the most common systematic bone disorder among elderly individuals worldwide. Long noncoding RNAs (lncRNAs) are involved in biological processes in various human diseases. It has been previously revealed that PAX8 antisense RNA 1 (PAX8-AS1) is upregulated in OP. However, its molecular mechanism in OP remains unclear. Therefore, we specifically designed this study to determine the specific role of PAX8-AS1 in OP. We first established a rat model of OP and then detected PAX8-AS1 expression in the rats with RT-qPCR. Next, to explore the biological function of PAX8-AS1 in osteoblasts, in vitro experiments, such as Cell Counting Kit-8 (CCK-8) assays, flow cytometry, western blotting and immunofluorescence (IF) staining, were conducted. Subsequently, we performed bioinformatic analysis and luciferase reporter assays to predict and identify the relationships between microRNA 1252-5p (miR-1252-5p) and both PAX8-AS1 and G protein subunit beta 1 (GNB1). Additionally, rescue assays in osteoblasts clarified the regulatory network of the PAX8-AS1/miR-1252-5p/GNB1 axis. Finally, in vivo loss-of-function studies verified the role of PAX8-AS1 in OP progression. The results illustrated that PAX8-AS1 was upregulated in the proximal tibia of OP rats. PAX8-AS1 silencing promoted the viability and inhibited the apoptosis and autophagy of osteoblasts. PAX8-AS1 interacted with miR-1252-5p. GNB1 was negatively regulated by miR-1252-5p. In addition, the impacts of PAX8-AS1 knockdown on osteoblasts were counteracted by GNB1 overexpression. PAX8-AS1 depletion suppressed OP progression by inhibiting apoptosis and autophagy in osteoblasts. In summary, PAX8-AS1 suppressed the viability and activated the autophagy of osteoblasts via the miR-1252-5p/GNB1 axis in OP.


Epigenomics ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1335-1352 ◽  
Author(s):  
Yaoyong Lu ◽  
Xubin Deng ◽  
Guanghui Xiao ◽  
Xin Zheng ◽  
Lei Ma ◽  
...  

Aim: To study the role of circRNA (circ_0001730) in glioblastoma. Materials & methods: The interaction between circ_0001730 and miR-326 was confirmed by FISH, RNA pull down, RNA-binding protein immunoprecipitation and luciferase reporter assays. Cell proliferation and growth were determined by MTT, EdU and colony formation assays. Cell migration was assessed by the Boyden assay. Results: The levels of circ_0001730 were elevated in glioblastoma cell lines and tissues. circ_0001730 downregulation suppressed migration and proliferation in glioblastoma cells. SP1 bounds to the promoter of circ_0001730 host gene EPHB4 thereby increasing the expression of circ_0001730. circ_0001730 activated the Wnt/β-catenin pathway via the miR-326/Wnt7B axis. Conclusion: circ_000173 promoted growth and invasion in glioblastoma cells via the miR-326/Wnt7B axis.


Sign in / Sign up

Export Citation Format

Share Document