scholarly journals Tracking Microbial Communities Across Aedes Albopictus Life Stages and Larval Habitat Types

Author(s):  
Amanda G. Tokash-Peters ◽  
Douglas C. Woodhams

Abstract Aedes albopictus, the Tiger Mosquito, has been hailed as one of the most invasive arbovirus-transmitting mosquitoes globally. With the growing potential of microbial methods for mosquito control, it has become increasingly imperative to understand the factors that contribute to naturally-occurring microbiome communities. Here, we analyzed the impact of larval water type and life stage on the microbial community of Aedes albopictus. The field-collected water samples from tree holes and tires that were used to rear larval mosquitoes in the laboratory were significantly different from each other in terms of sOTU (bacterial species) richness, with tree holes having a far greater number of sOTUs. For beta diversity measures (Bray-Curtis dissimilarity) Aedes albopictus were not significantly different from adult Aedes aegypti, but mosquito sex, life stage, and overall treatment group were significantly different when analyzed by ANOSIM. Based on our findings, the environment surrounding larval mosquitoes (and subsequent adult mosquitoes from those habitats) and the life stage of mosquitoes (regardless of species) shapes mosquito microbiome assemblages. This work further supports the idea that mosquito adults maintain a microbiome specific to larval habitat, despite major reductions to their microbiome prior to eclosion, which could shape the success of implemented microbial engineering or control methods.

2021 ◽  
Vol 12 ◽  
Author(s):  
Giulia Barbieri ◽  
Carolina Ferrari ◽  
Stefania Mamberti ◽  
Paolo Gabrieli ◽  
Michele Castelli ◽  
...  

Bacterial species able to produce proteins that are toxic against insects have been discovered at the beginning of the last century. However, up to date only two of them have been used as pesticides in mosquito control strategies targeting larval breeding sites: Bacillus thuringensis var. israelensis and Lysinibacillus sphaericus. Aiming to expand the arsenal of biopesticides, bacterial cultures from 44 soil samples were assayed for their ability to kill larvae of Aedes albopictus. A method to select, grow and test the larvicidal capability of spore-forming bacteria from each soil sample was developed. This allowed identifying 13 soil samples containing strains capable of killing Ae. albopictus larvae. Among the active isolates, one strain with high toxicity was identified as Brevibacillus laterosporus by 16S rRNA gene sequencing and by morphological characterization using transmission electron microscopy. The new isolate showed a larvicidal activity significantly higher than the B. laterosporus LMG 15441 reference strain. Its genome was phylogenomically characterized and compared to the available Brevibacillus genomes. Thus, the new isolate can be considered as a candidate adjuvant to biopesticides formulations that would help preventing the insurgence of resistance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ai-Ling Jiang ◽  
Ming-Chieh Lee ◽  
Guofa Zhou ◽  
Daibin Zhong ◽  
Dawit Hawaria ◽  
...  

AbstractLarval source management has gained renewed interest as a malaria control strategy in Africa but the widespread and transient nature of larval breeding sites poses a challenge to its implementation. To address this problem, we propose combining an integrated high resolution (50 m) distributed hydrological model and remotely sensed data to simulate potential malaria vector aquatic habitats. The novelty of our approach lies in its consideration of irrigation practices and its ability to resolve complex ponding processes that contribute to potential larval habitats. The simulation was performed for the year of 2018 using ParFlow-Common Land Model (CLM) in a sugarcane plantation in the Oromia region, Ethiopia to examine the effects of rainfall and irrigation. The model was calibrated using field observations of larval habitats to successfully predict ponding at all surveyed locations from the validation dataset. Results show that without irrigation, at least half of the area inside the farms had a 40% probability of potential larval habitat occurrence. With irrigation, the probability increased to 56%. Irrigation dampened the seasonality of the potential larval habitats such that the peak larval habitat occurrence window during the rainy season was extended into the dry season. Furthermore, the stability of the habitats was prolonged, with a significant shift from semi-permanent to permanent habitats. Our study provides a hydrological perspective on the impact of environmental modification on malaria vector ecology, which can potentially inform malaria control strategies through better water management.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 471
Author(s):  
Camino Gutiérrez-Corbo ◽  
Bárbara Domínguez-Asenjo ◽  
María Martínez-Valladares ◽  
Yolanda Pérez-Pertejo ◽  
Carlos García-Estrada ◽  
...  

Diseases caused by trypanosomatids (Sleeping sickness, Chagas disease, and leishmaniasis) are a serious public health concern in low-income endemic countries. These diseases are produced by single-celled parasites with a diploid genome (although aneuploidy is frequent) organized in pairs of non-condensable chromosomes. To explain the way they reproduce through the analysis of natural populations, the theory of strict clonal propagation of these microorganisms was taken as a rule at the beginning of the studies, since it partially justified their genomic stability. However, numerous experimental works provide evidence of sexual reproduction, thus explaining certain naturally occurring events that link the number of meiosis per mitosis and the frequency of mating. Recent techniques have demonstrated genetic exchange between individuals of the same species under laboratory conditions, as well as the expression of meiosis specific genes. The current debate focuses on the frequency of genomic recombination events and its impact on the natural parasite population structure. This paper reviews the results and techniques used to demonstrate the existence of sex in trypanosomatids, the inheritance of kinetoplast DNA (maxi- and minicircles), the impact of genetic exchange in these parasites, and how it can contribute to the phenotypic diversity of natural populations.


Author(s):  
Fatemeh Alizadeh ◽  
Navid Kharghani ◽  
Carlos Guedes Soares

Glass/Vinylester composite laminates are comprehensively characterised to assess its impact response behaviour under moisture exposure in marine structures. An instrumented drop weight impact machine is utilised to determine the impact responses of dry and immersed specimens in normal, salted and sea water. The specimens, which had three different thicknesses, were subjected to water exposure for a very long period of over 20 months before tested in a low-velocity impact experiment. Water uptake was measured primarily to study the degradation profiles of GRP laminates after being permeated by water. Matrix dissolution and interfacial damage observed on the laminates after prolonged moisture exposure while the absorption behaviour was found typically non-Fickian. The weight of the composite plates firstly increased because of water diffusion up to month 15 and then decreased due to matrix degradation. The specimens with 3, 6 and 9 mm thickness exhibited maximum water absorption corresponding to 2.6%, 0.7% and 0.5% weight gain, respectively. In general, the results indicated that water uptake and impact properties were affected by thickness and less by water type. Impact properties of prolonged immersed specimens reduced remarkably, and intense failure modes detected almost in all cases. The least sensitive to impact damage were wet specimens with 9 mm thickness as they indicated similar maximum load and absorbed energy for different impact energies.


Marine Drugs ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 196
Author(s):  
Muhammad Bilal ◽  
Leonardo Vieira Nunes ◽  
Marco Thúlio Saviatto Duarte ◽  
Luiz Fernando Romanholo Ferreira ◽  
Renato Nery Soriano ◽  
...  

Naturally occurring biological entities with extractable and tunable structural and functional characteristics, along with therapeutic attributes, are of supreme interest for strengthening the twenty-first-century biomedical settings. Irrespective of ongoing technological and clinical advancement, traditional medicinal practices to address and manage inflammatory bowel disease (IBD) are inefficient and the effect of the administered therapeutic cues is limited. The reasonable immune response or invasion should also be circumvented for successful clinical translation of engineered cues as highly efficient and robust bioactive entities. In this context, research is underway worldwide, and researchers have redirected or regained their interests in valorizing the naturally occurring biological entities/resources, for example, algal biome so-called “treasure of untouched or underexploited sources”. Algal biome from the marine environment is an immense source of excellence that has also been demonstrated as a source of bioactive compounds with unique chemical, structural, and functional features. Moreover, the molecular modeling and synthesis of new drugs based on marine-derived therapeutic and biological cues can show greater efficacy and specificity for the therapeutics. Herein, an effort has been made to cover the existing literature gap on the exploitation of naturally occurring biological entities/resources to address and efficiently manage IBD. Following a brief background study, a focus was given to design characteristics, performance evaluation of engineered cues, and point-of-care IBD therapeutics of diverse bioactive compounds from the algal biome. Noteworthy potentialities of marine-derived biologically active compounds have also been spotlighted to underlying the impact role of bio-active elements with the related pathways. The current review is also focused on the applied standpoint and clinical translation of marine-derived bioactive compounds. Furthermore, a detailed overview of clinical applications and future perspectives are also given in this review.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Emma Stump ◽  
Lauren M. Childs ◽  
Melody Walker

Abstract Background Mosquitoes are vectors for diseases such as dengue, malaria and La Crosse virus that significantly impact the human population. When multiple mosquito species are present, the competition between species may alter population dynamics as well as disease spread. Two mosquito species, Aedes albopictus and Aedes triseriatus, both inhabit areas where La Crosse virus is found. Infection of Aedes albopictus by the parasite Ascogregarina taiwanensis and Aedes triseriatus by the parasite Ascogregarina barretti can decrease a mosquito’s fitness, respectively. In particular, the decrease in fitness of Aedes albopictus occurs through the impact of Ascogregarina taiwanensis on female fecundity, larval development rate, and larval mortality and may impact its initial competitive advantage over Aedes triseriatus during invasion. Methods We examine the effects of parasitism of gregarine parasites on Aedes albopictus and triseriatus population dynamics and competition with a focus on when Aedes albopictus is new to an area. We build a compartmental model including competition between Aedes albopictus and triseriatus while under parasitism of the gregarine parasites. Using parameters based on the literature, we simulate the dynamics and analyze the equilibrium population proportion of the two species. We consider the presence of both parasites and potential dilution effects. Results We show that increased levels of parasitism in Aedes albopictus will decrease the initial competitive advantage of the species over Aedes triseriatus and increase the survivorship of Aedes triseriatus. We find Aedes albopictus is better able to invade when there is more extreme parasitism of Aedes triseriatus. Furthermore, although the transient dynamics differ, dilution of the parasite density through uptake by both species does not alter the equilibrium population sizes of either species. Conclusions Mosquito population dynamics are affected by many factors, such as abiotic factors (e.g. temperature and humidity) and competition between mosquito species. This is especially true when multiple mosquito species are vying to live in the same area. Knowledge of how population dynamics are affected by gregarine parasites among competing species can inform future mosquito control efforts and help prevent the spread of vector-borne disease.


2021 ◽  
Vol 9 (5) ◽  
pp. 1037
Author(s):  
Craig Resch ◽  
Mihir Parikh ◽  
J. Alejandro Austria ◽  
Spencer D. Proctor ◽  
Thomas Netticadan ◽  
...  

There is an increased interest in the gut microbiota as it relates to health and obesity. The impact of diet and sex on the gut microbiota in conjunction with obesity also demands extensive systemic investigation. Thus, the influence of sex, diet, and flaxseed supplementation on the gut microbiota was examined in the JCR:LA-cp rat model of genetic obesity. Male and female obese rats were randomized into four groups (n = 8) to receive, for 12 weeks, either (a) control diet (Con), (b) control diet supplemented with 10% ground flaxseed (CFlax), (c) a high-fat, high sucrose (HFHS) diet, or (d) HFHS supplemented with 10% ground flaxseed (HFlax). Male and female JCR:LA-cp lean rats served as genetic controls and received similar dietary interventions. Illumine MiSeq sequencing revealed a richer microbiota in rats fed control diets rather than HFHS diets. Obese female rats had lower alpha-diversity than lean female; however, both sexes of obese and lean JCR rats differed significantly in β-diversity, as their gut microbiota was composed of different abundances of bacterial types. The feeding of an HFHS diet affected the diversity by increasing the phylum Bacteroidetes and reducing bacterial species from phylum Firmicutes. Fecal short-chain fatty acids such as acetate, propionate, and butyrate-producing bacterial species were correspondingly impacted by the HFHS diet. Flax supplementation improved the gut microbiota by decreasing the abundance of Blautia and Eubacterium dolichum. Collectively, our data show that an HFHS diet results in gut microbiota dysbiosis in a sex-dependent manner. Flaxseed supplementation to the diet had a significant impact on gut microbiota diversity under both flax control and HFHS dietary conditions.


Author(s):  
Paul Mark Mitchell ◽  
Samantha Husbands ◽  
Sabina Sanghera ◽  
Fergus John Caskey ◽  
Jemima Scott ◽  
...  

Abstract Purpose Capability wellbeing measures, such as the ICECAP measures, have been proposed for use in economic evaluations to capture broader outcomes of health and care interventions. The ICECAP measures have been developed to reflect capabilities at different stages of life. Some patient groups include patients of different ages and at different stages of life, so it is not always apparent which ICECAP measure is most relevant. This study explores the impact of age and life stage on completion, where both ICECAP-A and ICECAP-O were completed by the same patient. Methods A think-aloud study, and an associated semi-structured interview were conducted with people receiving kidney care as a renal outpatient, kidney transplant outpatient, or through receiving facility-based haemodialysis. Qualitative analysis focused on (1) differences in responses across measures by individuals, where attributes had conceptual overlap, (2) key factors in self-reported capability levels, and (3) measure preference. Results Thirty participants were included in the study, with a mix of older and younger adults. Attributes with similar wording across measures produced similar responses compared to attributes where wording differed. Age and health were key factors for self-reported capability levels. ICECAP-A was slightly preferred overall, including by older adults. Conclusion This study suggests use of ICECAP-A in patients with certain chronic health conditions that include a mix of adults across the life course. This study highlights the importance of considering the stage of life when using capability measures and in economic evaluations of health and care interventions more generally.


1996 ◽  
Vol 42 (8) ◽  
pp. 1345-1349 ◽  
Author(s):  
J B Silkworth ◽  
J F Brown

Abstract Humans are exposed daily to low concentrations of many different chemical substances, natural and some man-made. Although many of these substances can be toxic at high levels, typical exposures are far below the effect levels. The responses produced by man-made aromatic hydrocarbon receptor agonists, such as dioxins, polychlorinated dibenzofurans, coplanar polychlorinated biphenyls, and polycyclic aromatic hydrocarbons, are also produced, often to greater extents [corrected], by naturally occurring constituents of fried meat, cabbage, broccoli, cauliflower, cocoa, and curry. Our society seems to be concerned about the health risks associated only with the synthetic chemicals, regardless of their proportional contribution to the total agonist activity, and regulates on the basis of such concerns. It would be more protective of the public health to determine acceptable concentrations for each type of response, regardless of the origin of the inducing agent, and issue advisories or regulations accordingly.


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 321
Author(s):  
Stefan Cristian Prazaru ◽  
Giulia Zanettin ◽  
Alberto Pozzebon ◽  
Paola Tirello ◽  
Francesco Toffoletto ◽  
...  

Outbreaks of the Nearctic leafhopper Erasmoneura vulnerata represent a threat to vinegrowers in Southern Europe, in particular in North-eastern Italy. The pest outbreaks are frequent in organic vineyards because insecticides labeled for organic viticulture show limited effectiveness towards leafhoppers. On the other hand, the naturally occurring predators and parasitoids of E. vulnerata in vineyards are often not able to keep leafhopper densities at acceptable levels for vine-growers. In this study, we evaluated the potential of two generalist, commercially available predators, Chrysoperla carnea and Orius majusculus, in suppressing E. vulnerata. Laboratory and semi-field experiments were carried out to evaluate both species’ predation capacity on E. vulnerata nymphs. The experiments were conducted on grapevine leaves inside Petri dishes (laboratory) and on potted and caged grapevines (semi-field); in both experiments, the leaves or potted plants were infested with E. vulnerata nymphs prior to predator releases. Both predator species exhibited a remarkable voracity and significantly reduced leafhopper densities in laboratory and semi-field experiments. Therefore, field studies were carried out over two growing seasons in two vineyards. We released 4 O. majusculus adults and 30 C. carnea larvae per m2 of canopy. Predator releases in vineyards reduced leafhopper densities by about 30% compared to the control plots. Results obtained in this study showed that the two predators have a potential to suppress the pest density, but more research is required to define appropriate predator–prey release ratios and release timing. Studies on intraguild interactions and competition with naturally occurring predators are also suggested.


Sign in / Sign up

Export Citation Format

Share Document