scholarly journals LncRNA SOX2-OT Participates in Parkinson’s Disease Through Regulating miRNA-942-5p/NAIF1 Axis

Author(s):  
Yabi Guo ◽  
Yanyang Liu ◽  
Hong Wang ◽  
Peijun Liu

Abstract Parkinson’s disease (PD) is a neurodegenerative disease. Studies have shown that lncRNA SOX2-OT was highly expressed in PD patients, but its specific functions and mechanisms still need further research. This study aimed to explore whether lncRNA SOX2-OT could regulate oxidative stress, inflammation and neuronal apoptosis in PD in vitro model and explored the underlying mechanism. An in vitro PD cell model was induced by 1-methyl-4-phenylpyridinium (MPP+). The results of the biological software analysis and luciferase reporter assay indicated that miR-942-5p was a direct target of lncRNA SOX2-OT, and NAIF1 was a direct target of miR-942-5p. Experiments showed that the expression levels of lncRNA SOX2-OT and NAIF1 were increased, and miR-942-5p expression was decreased in SH-SY5Y cells following MPP+ treatment. In addition, MPP+ treatment reduced SH-SY5Y cell viability, induced apoptosis, increased cleaved-Caspase3 protein expression, and increased cleaved-Caspase3/Caspase3 ratio, increased LDH viability, and increased the levels of TNF-α, IL-1β and ROS in SH-SY5Y cells, reduced SOD activity, however, all these effects were inhibited by SOX2-OT-siRNA, and these inhibitions were reversed by miR-942-5p inhibitor. Moreover, the protective role of miR-942-5p mimic in MPP+ induced SH-SY5Y cells was significantly eliminated by NAIF1-plasmid. In summary, this study confirmed that lncRNA SOX2-OT regulated oxidative stress, inflammation and neuronal apoptosis via directly regulating the miR-942-5p/NAIF1 signal axis, and then participated in the occurrence and development of PD. These data provide a new potential targets for PD diagnosis and treatment.

2016 ◽  
Vol 44 (05) ◽  
pp. 907-925 ◽  
Author(s):  
Thomas Friedemann ◽  
Yue Ying ◽  
Weigang Wang ◽  
Edgar R. Kramer ◽  
Udo Schumacher ◽  
...  

The rhizome of Coptis chinensis is commonly used in traditional Chinese medicine alone or in combination with other herbs to treat diseases characterized by causing oxidative stress including inflammatory diseases, diabetes mellitus and neurodegenerative diseases. In particular, there is emerging evidence that Coptis chinensis is effective in the treatment of neurodegenerative diseases associated with oxidative stress. Hence, the aim of this study was to investigate the neuroprotective effect of Coptis chinensis in vitro and in vivo using MPP[Formula: see text] and MPTP models of Parkinson’s disease. MPP[Formula: see text] treated human SH-SY5Y neuroblastoma cells were used as a cell model of Parkinson’s disease. A 24[Formula: see text]h pre-treatment of the cells with the watery extract of Coptis chinensis significantly increased cell viability, as well as the intracellular ATP concentration and attenuated apoptosis compared to the MPP[Formula: see text] control. Further experiments with the main alkaloids of Coptidis chinensis, berberine, coptisine, jaterorrhizine and palmatine revealed that berberine and coptisine were the main active compounds responsible for the observed neuroprotective effect. However, the full extract of Coptis chinensis was more effective than the tested single alkaloids. In the MPTP-induced animal model of Parkinson’s disease, Coptis chinensis dose-dependently improved motor functions and increased tyrosine hydroxylase-positive neurons in the substantia nigra compared to the MPTP control. Based on the results of this work, Coptis chinensis and its main alkaloids could be considered potential candidates for the development of new treatment options for Parkinson’s disease.


2021 ◽  
Vol 11 (8) ◽  
pp. 1106
Author(s):  
Silvia Claros ◽  
Antonio Gil ◽  
Mauro Martinelli ◽  
Nadia Valverde ◽  
Estrella Lara ◽  
...  

Stress seems to contribute to the neuropathology of Parkinson’s disease (PD), possibly by dysregulation of the hypothalamic–pituitary–adrenal axis. Oxidative distress and mitochondrial dysfunction are key factors involved in the pathophysiology of PD and neuronal glucocorticoid-induced toxicity. Animal PD models have been generated to study the effects of hormonal stress, but no in vitro model has yet been developed. Our aim was to examine the impact of corticosterone (CORT) administration on a dopaminergic neuronal cell model of PD induced by the neurotoxin MPP+, as a new combined PD model based on the marker of endocrine response to stress, CORT, and oxidative-mitochondrial damage. We determined the impact of CORT, MPP+ and their co-incubation on reactive oxygen species production (O2−•), oxidative stress cellular markers (advanced-oxidation protein products and total antioxidant status), mitochondrial function (mitochondrial membrane potential and mitochondrial oxygen consumption rate) and neurodegeneration (Fluoro-Jade staining). Accordingly, the administration of MPP+ or CORT individually led to cell damage compared to controls (p < 0.05), as determined by several methods, whereas their co-incubation produced strong cell damage (p < 0.05). The combined model described here could be appropriate for investigating neuropathological hallmarks and for evaluating potential new therapeutic tools for PD patients suffering mild to moderate emotional stress.


2020 ◽  
Vol 21 (8) ◽  
pp. 2761 ◽  
Author(s):  
Sandra Buratta ◽  
Elisabetta Chiaradia ◽  
Alessia Tognoloni ◽  
Angela Gambelunghe ◽  
Consuelo Meschini ◽  
...  

Oxidative stress is considered to be a key factor of the pathogenesis of Parkinson’s disease, a multifactorial neurodegenerative disorder characterized by reduced dopaminergic neurons in the substantia nigra pars compacta and accumulated protein aggregates. Rotenone is a worldwide-used pesticide that induces the most common features of Parkinson’s by direct inhibition of the mitochondrial complex I. Rotenone-induced Parkinson’s models, as well as brain tissues from Parkinson’s patients, are characterized by the presence of both lipid peroxidation and protein oxidation markers resulting from the increased level of free radical species. Oxidation introduces several modifications in protein structure, including carbonylation and nitrotyrosine formation, which severely compromise cell function. Due to the link existing between oxidative stress and Parkinson’s disease, antioxidant molecules could represent possible therapeutic tools for this disease. In this study, we evaluated the effect of curcumin, a natural compound known for its antioxidant properties, in dopaminergic PC12 cells treated with rotenone, a cell model of Parkinsonism. Our results demonstrate that the treatment of PC12 cells with rotenone causes severe protein damage, with formation of both carbonylated and nitrotyrosine-derived proteins, whereas curcumin (10 µM) co-exposure exerts protective effects by reducing the levels of oxidized proteins. Curcumin also promotes proteasome activation, abolishing the inhibitory effect exerted by rotenone on this degradative system.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Jiahui Liu ◽  
Hong Liu ◽  
Zhenxiang Zhao ◽  
Jianfeng Wang ◽  
Dandan Guo ◽  
...  

Abstract The present study aimed to identify the gene expression changes conferred by capsaicin in the cell model of 6-OHDA-induced Parkinson's disease, to disclose the molecular mechanism of action of capsaicin. We used capsaicin-treated and paraffin-embedded wax blocks containing substantia nigra tissue from 6-OHDA-induced Parkinson's disease rats to analyze transcriptional changes using Affymetrix GeneChip Whole Transcript Expression Arrays. A total of 108 genes were differentially expressed in response to capsaicin treatment, and seven of these genes were selected for further analysis: Olr724, COX1, Gsta2, Rab5a, Potef, Actg1, and Acadsb, of which Actg1 (actin gamma 1) was down-regulated and Gsta2 (Glutathione S-transferase alpha 2) was up-regulated. We successfully overexpressed Actg1 and Gsta2 in vitro. CCK-8 detection and flow cytometry demonstrated that overexpression of Actg1 and Gsta2 increased apoptosis in the 6-OHDA-induced Parkinson's disease cell model. The imbalance between Actg1 and Gsta2 may be one of the mechanisms of cell damage in Parkinson's disease (PD). Capsaicin can protect the cells and reduce the apoptosis rate by regulating Actg1 and Gsta2.


2021 ◽  
Author(s):  
Ruijie Zhang ◽  
Nana Zhang ◽  
Xiaoqing Dong ◽  
Xin Chen ◽  
Jing Ma ◽  
...  

Abstract Oxidative stress is closely related to the pathogenesis of Parkinson's disease (PD), a typical neurodegenerative disease. NADPH oxidase 2 (NOX2) is involved in hydrogen peroxide (H2O2) generation. Recently, we have reported that H2O2 and PD toxins, including 6-hydroxydopamine (6-OHDA), 1-Methyl-4-phenylpyridin-1-ium (MPP+) and rotenone, induce neuronal apoptosis by inhibiting mTOR pathway. Here, we show that 6-OHDA, MPP+ or rotenone induced H2O2 generation by upregulation of NOX2 and its regulatory proteins (p22phox, p40phox, p47phox, p67phox, and Rac1), leading to apoptotic cell death in PC12 cells and primary neurons. Pretreatment with catalase, a H2O2-scavenging enzyme, significantly blocked PD toxins-evoked NOX2-derived H2O2, thereby hindering activation of AMPK, inhibition of Akt/mTOR, induction of apoptosis in neuronal cells. Similar events were also seen in the cells pretreated with Mito-TEMPO, a mitochondria-specific superoxide scavenger, implying a mitochondrial H2O2-dependent mechanism involved. Further research revealed that inhibiting NOX2 with apocynin or silencing NOX2 attenuated the effects of PD toxins on AMPK/Akt/mTOR and apoptosis in the cells. Of importance, ectopic expression of constitutively active Akt or dominant negative AMPKα, or inhibition of AMPK with compound C suppressed PD toxins-induced expression of NOX2 and its regulatory proteins, as well as consequential H2O2 and apoptosis in the cells. Taken together, these results indicate that certain PD toxins can impede the AMPK/Akt-mTOR signaling pathway leading to neuronal apoptosis by eliciting NOX2-derived H2O2. Our findings suggest that neuronal loss in PD may be prevented by regulating of NOX2, AMPK/Akt-mTOR signaling and/or administering antioxidants to ameliorate oxidative stress.


2020 ◽  
Author(s):  
Junqiang Yan ◽  
Hongxia Ma ◽  
Xiaoyi Lai ◽  
Jiannan Wu ◽  
Anran Liu ◽  
...  

Abstract Background Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's. The drugs currently used to treat PD cannot inhibit the development of PD, and long-term use produces severe drug resistance and adverse reaction. Artemisinin (ART) is an active ingredient of Artemisia annua and has a neuroprotective effect, but the mechanism is still unclear. This study was designed to investigate the neuroprotective effect of ART in MPP+-treated SH-SY5Y cells. Results There was no significant cytotoxicity when the ART concentration was under. 40μM. The 20μM ART for 24h could increase the cell viability by reducing oxidative stress and cell apoptosis in MPP+-treated SH-SY5Y cell. In addition, immunoblot and immunofluorescence results showed that MPP+ treatment increased the expression of Beclin1, LC3II/LC3I and decreased the expression of P62, while ART can reverse the changes caused by MPP+. Discussion More and more researches reported that ART and its derivates have neuroprotective effects through anti-oxidant and anti-apoptosis. we found that pre-treated cells with 20μM ART for 4h could significantly increase the viability in Parkinson's disease cell model. The oxidative stress and apoptosis were the main reason for the degeneration of dopaminergic neurons, while artemisinin can attenuate oxidative stress and apoptosis in MPP+-lesioned dopaminergic neurons. The levels of autophagy proteins LC3II/I, Beclin1 and P62 also showed that MPP+ increased the autophagy level, and pre-treatment with ART decreased the autophagy level, which may be the pathological mechanism for artemisinin to reduce oxidative stress damage and apoptosis. Conclusions These results indicate that ART exerts a positive effect on MPP+-treated SH-SY5Y cells in terms of anti-oxidative stress and anti-apoptosis. These effects may be related to autophagy. These findings contribute to a better understanding of the critical role of ART in PD treatment.


2020 ◽  
Vol 19 (6) ◽  
pp. 1197-1201 ◽  
Author(s):  
Jing Li ◽  
Yue Liu ◽  
Li Wang ◽  
Zhaowei Gu ◽  
Zhigang Huan ◽  
...  

Purpose: To investigation the protective effects of hesperetin against 6-hydroxydopamine (6-OHDA)- induced neurotoxicity. Methods: SH-SY5Y cells were incubated with 6-OHDA to create an in vitro model of neurotoxicity. This model was used to test the neuroprotective effects of hesperetin. Cell viability was assessed by MTT and lactate dehydrogenase (LDH) release assays. Flow cytometry and western blot were used to quantify apoptosis. Oxidative stress was evaluated by determining intracellular glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD), and reactive oxygen species (ROS). Results: In SH-SY5Y cells, treatment with 6-OHDA decreased cell viability and promoted LDH release. However, exogenous hesperetin protected against 6-OHDA-mediated toxicity. Similarly, although incubation with 6-OHDA induced apoptosis and increased cleaved caspase-3 and -9 levels, treatment with hesperetin protected against these effects. Treatment with 6-OHDA also led to significant oxidative stress, as indicated by reduced GSH and SOD levels and increased MDA and ROS levels in SH-SY5Y cells. However, these changes were reversed by pre-treatment with hesperetin. Of interest, hesperetin led to changes in 6-OHDA-induced expression of NRF2, heme oxygenase-1 (HO-1), glutamate-cysteine ligase (GCL) catalytic subunit (GCLC), and GCL modulatory (GCLM). Conclusion: Hesperetin protects against cell toxicity, apoptosis, and oxidative stress via activation of NRF2 pathway in a 6-OHDA-induced model of neurotoxicity. Future studies should investigate the use of hesperetin as a potential therapeutic approach for prevention or management of Parkinson’s disease. Keywords: Hesperetin, 6-OHDA, Neurotoxicity, NRF2, Parkinson’s disease


Sign in / Sign up

Export Citation Format

Share Document