scholarly journals Scalable Reaction Network Modeling with Automatic Validation of Consistency in Event-B

Author(s):  
Usman Sanwal ◽  
Thai Son Hoang ◽  
Luigia Petre ◽  
Ion Petre

Abstract Constructing a large biological model is a difficult, error-prone process. Small errors in writing a part of the model cascade to the system level and their sources are difficult to trace back. In this paper we extend a recent approach based on Event-B, a state-based formal method with refinement as its central ingredient, allowing us to validate for model consistency step-by-step in an automated way. We demonstrate this approach on a model of the heat shock response and its scalability on a model of the ErbB signaling pathway, a key evolutionary pathway with a significant role in development and in many types of cancer. All consistency properties of the model were proved automatically with computer support.

2021 ◽  
Author(s):  
Salil.K. Sukumaran ◽  
Pradip Paul ◽  
Vishweshwa Guttal ◽  
Alekhya Vemula ◽  
Harsimar Bhatt ◽  
...  

ABSTRACTCellular migration is a ubiquitous feature of development that brings brain cells into appropriate spatial relationships. Cortical thinning has been reported in post-mortem brain samples of patients with bipolar disorder (BD). It could be that defective cellular migration during brain development is one of the contributing mechanisms in BD pathogenesis, leading to abnormalities reported at post-mortem, and during brain imaging. To probe the role of cellular migration in BD, we conducted time-lapse analysis of migration of neural precursor cells (NPCs) previously generated in our laboratory. Two NPC lines (B1 and B2) and one control line (C1) were used for the cell migration experiments. Time-lapse images were recorded every 15 min, for 15 hours, and analysed for speed and direction of cellular migration. Abnormalities in cellular migration was a common feature observed in both patient-derived NPCs. Consequently, we investigated underlying mechanistic irregularities in B1 and B2 lines that may contribute to the observed phenotype. To this end, transcriptional changes were compared between the patient-derived cells with the control line. Additionally, we examined exonic variations in genes related to cellular migration or motility. Our analysis showed downregulation of multiple genes that are all part of the EGF/ERBB signaling pathway. Collective dysregulation may be producing the defective cellular phenotype. These cellular migration abnormalities may be linked to structural changes in the brain reported in bipolar disorder.


2021 ◽  
Vol 13 ◽  
Author(s):  
Guan-yong Ou ◽  
Wen-wen Lin ◽  
Wei-jiang Zhao

Neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS), are typically characterized by progressive neuronal loss and neurological dysfunctions in the nervous system, affecting both memory and motor functions. Neuregulins (NRGs) belong to the epidermal growth factor (EGF)-like family of extracellular ligands and they play an important role in the development, maintenance, and repair of both the central nervous system (CNS) and peripheral nervous system (PNS) through the ErbB signaling pathway. They also regulate multiple intercellular signal transduction and participate in a wide range of biological processes, such as differentiation, migration, and myelination. In this review article, we summarized research on the changes and roles of NRGs in neurodegenerative diseases, especially in AD. We elaborated on the structural features of each NRG subtype and roles of NRG/ErbB signaling networks in neurodegenerative diseases. We also discussed the therapeutic potential of NRGs in the symptom remission of neurodegenerative diseases, which may offer hope for advancing related treatment.


2021 ◽  
Author(s):  
Fatemeh Gheidari ◽  
Ehsan Arefian ◽  
Mahboubeh Kabiri ◽  
Ehsan Seyedjafari ◽  
Ladan Teimoori-Toolabi ◽  
...  

Abstract Glioblastoma is aggressive and lethal brain cancer, which is incurable by cancer standard treatments. miRNAs have great potential to be used for gene therapy due to their ability to modulate several target genes simultaneously. We found miR-429 is downregulated in glioblastoma and has several predicted target genes from the ERBB signaling pathway using bioinformatics tools. ERBB is the most over-activated genetic pathway in glioblastoma patients, which is responsible for augmented cell proliferation and migration in glioblastoma multiforme (GBM). Here we overexpressed miR-429 using lentiviral vectors in GBM U-251 cells and observed that the expression level of several oncogenes of the ERBB pathway, EGFR, PIK3CA, PIK3CB, KRAS, and MYC significantly decreased; as shown by real-time PCR and western blotting. Using the luciferase assay, we showed that miR-429 directly targets MYC, BCL2, and EGFR. In comparison to scrambled control, miR-429 had a significant inhibitory effect on cell proliferation and migration as deduced from MTT and scratch wound assays and induced cell-cycle arrest in flow cytometry. Altogether miR-429 seems to be an efficient suppressor of the ERBB genetic signaling pathway and a potential therapeutic for glioblastoma.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 2-3
Author(s):  
Qian Zhang ◽  
Chao Xue ◽  
Xin Wang ◽  
Kang Lu ◽  
Xueling Ge ◽  
...  

Introduction: CD5-positive diffuse large B-cell lymphoma (CD5+ DLBCL) is characterized by a poor prognosis, poorly respond to the regulatory treatment strategy, and a relatively high incidence of central nervous system (CNS) infiltration. In this study, we aim to identify key differentially expressed miRNAs (DE-miRNAs) and their target genes in the peripheral blood of CD5+ refractory and relapsed (CD5+ R/R DLBCL) patients. The relationship of the DE-miRNAs and the pathogenesis of CD5+ R/R DLBCL will also be analyzed by bioinformatics tools. Methods: Three female patients with confirmed CD5+ R/R DLBCL were enrolled in this study, their age were 38, 62 and 65 years old, respectively. Three healthy female adults aged 42, 55 and 61, respectively were selected as the control group. The peripheral venous blood of them was collected for RNA extraction and standard small RNA sequencing. Differentially expressed miRNAs analysis was performed with R package edgeR. The target genes of DE-miRNAs were predicted by miRNet. A protein protein interaction (PPI) network was established for these target genes through string database. Functional annotation and pathway enrichment analyses for the target genes were performed through DAVID database to identify their potential functions, target genes, and pathways they might be involved in. Results: 1. Scatter plots, Volcano plots and Heat-maps were used to visualize miRNAs of Differentially expressed genes. As shown in Fig.1, Fig. 2 and Fig. 3. 2. Fifty-five sequences were significantly upregulated and 23 were significantly downregulated in patients with CD5+ R/R DLBCL.Among the candidate miRNAs, 11 up-regulated genes and 4 down-regulated genes were selected according to the log2FC value. The target genes of 11 potential up-regulated and 4 down-regulated DE-miRNAs were successively predicted by As shown in Table 1, a total of 439 and 632 predicted targets of the up-regulated and down-regulated DE-miRNAs were identified, respectively. 3. PPI networks of predicted target genes of 11 upregulated DE-miRNAs (Fig.4a) and 4 downregulated DE-miRNAs (Fig. 4b) were separately constructed using the STRING database and Cytoscape software. According to a degree, the top 10 hub genes in the networks were screened out and were listed inTable 2. Six important hub genes were identified, including two target genes predicted by up-regulating DE-miRNAs, namely NRAS and PIK3R1, and four target genes predicted by down-regulating DE-miRNAs, namely EGFR, VEGFA, IGF1 and Grb2. 4. DAVID now provides a comprehensive set of functional annotation tools for investigators to understand biological meaning. GO analysis was divided into three functional groups, including molecular function (MF), biological processes (BP), and cell composition (CC). The top 10 GO terms of targets of up-regulated DE-miRNAs were presented in Fig.5a-c. The top 10 GO terms of targets of down-regulated DE-miRNAs were shown in Fig. 5d-f. 5. Based on the KEGG database, we analyzed the pathways in which the differentially expressed target genes were involved in. As shown in Fig. 6a-b. The targets of up-regulated DE-miRNAs were enriched in pathways in cancer, oxytocin signaling pathway, ErbB signaling pathway, Rap1 signaling pathway, and proteoglycans in cancer. Whereas the targets of down-regulated DE-miRNAs were enriched in pathways in cancer, Ras signaling pathway, and PI3K-Akt signaling pathway. Conclusions: In this study, we analyzed the differentially expressed miRNAs in CD5+ R/R DLBCL patients, identified their potential functions, target genes, and pathways they might be involved in. This study found that ErbB signaling pathway, Rap1 signaling pathway, Ras signaling pathway and PI3K Akt signaling pathway were the most frequently involved pathways of miRNAs related genes. Target genes including NRAS, PIK3R1, EGFR, VEGFA, IGF1, and Grb2 might have a close relationship in the pathogenesis of CD5+ R/R DLBCL. New targeted drugs related to these pathways and genes may be beneficial to the treatment of CD5+ DLBCL. Our preliminary informatic results might be helpful to deeply understand the pathogenesis and chemotherapy resistance mechanism of CD5+ R/R DLBCL. In the future, we will verify our preliminary informatic results in pathological tissues from patients with CD5+ DLBCL in larger samples. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Saba Hashemi ◽  
Naghmeh Yari ◽  
Fatemeh Rahimi Jamnani ◽  
Reza Mahdian ◽  
Morteza Karimipoor ◽  
...  

Abstract The ErbB signaling pathway plays important role in the pathogenesis of lung cancer. We explored the role of miRNA-377 as a tumor suppressor in NSCLC through silencing of some genes in the ErbB pathway.Targeting the effect of miRNA-377 on EGFR, MAPK1, ABL2, and PAK2 was evaluated. The expression levels of these genes and miRNA-377 were surveyed in NSCLC and normal human tissues, Calu-6, and A549 cells. Real-time PCR was used to figure out whether miRNA-377 could decrease the target genes mRNAs in transfected lung cancer cell lines. The effects of miRNA-377 on apoptosis cell and proliferation were analyzed. We showed that miRNA-377 targets EGFR, MAPK1, and PAK2 mRNAs in in-silico and luciferase reporter assay. The expression of miRNA-377 was significantly downregulated in human NSCLC tissues, Calu-6 and A549 cells compared to their controls. We observed a negative correlation between EGFR, MAPK1, PAK2, and miRNA-377 expression in human NSCLC tissues. A significant reduction in EGFR, MAPK1, and PAK2 mRNA levels was detected, following miRNA-377 transfection in Calu-6 and A549 cells. The higher levels of miRNA-377 in Calu-6, and A549 cells induced apoptosis and reduced proliferation, significantly. All these data reveal that miRNA-377 functions as a tumor suppressor in NSCLC and may serve as a potential therapeutic target for the treatment of NSCLC.


Sign in / Sign up

Export Citation Format

Share Document