scholarly journals Ononin alleviates Doxorubicin-induced cardiotoxicity by inhibiting ER stress through activation of SIRT3

Author(s):  
Shimin Sun ◽  
Jingfan Weng ◽  
Qi Yang ◽  
Xingxiao Huang ◽  
Zhenzhu Sun ◽  
...  

Abstract Introduction Doxorubicin (DOX) is a powerful anthracycline antineoplastic drug, but the clinical application of DOX is seriously limited by its dose-dependent cardiotoxicity. Ononin is a natural isoflavone glycoside and plays a key role in modulating apoptosis related signaling pathways. The aim of this study was to assess the possible cardioprotective effects of Ononin in DOX-induced cardiotoxicity and the underlying molecular mechanisms. Materials and methods Wistar rats were treated with normal saline, DOX with or without Ononin. After the last administration, cardiac function was evaluated by echocardiography. Rats were then sacrificed for histological and TUNEL analyses, with immunological detection for β-actinin, Bax, Bcl-2, GRP78, CHOP and SIRT3. An enzyme-linked immunosorbent assay was performed to assess the myocardial injury markers. H9C2 cells were treated with vehicle, DOX with or without Ononin. Then, 3-TYP was used to find out the relationship between ER stress and SIRT3. Results Ononin treatment ameliorated DOX-induced myocardial injury as demonstrated by echocardiography. Ononin partially restored DOX-induced cardiac dysfunction, both LVEF and LVFS were increased under the cotreatment of Ononin. Ononin also inhibited DOX-induced ER stress and apoptosis in rat cardiomyocytes and H9C2 cells. DOX group had a higher Bax/Bcl-2 ratio, GRP78 and CHOP expression then control group, but Ononin treatment improved these results. This effect was associated with SIRT3 activity, moreover, selective inhibition of SIRT3 blocked the protective effects of Ononin. Conclusion In the present study, we tested the hypothesis that Ononin may protect against DOX-induced cardiomyopathy through ER stress both in vitro and in vivo. Ononin is able to protect against DOX-induced cardiotoxicity by inhibiting ER stress and apoptosis, this effect may via stimulation of the SIRT3 pathway.

2021 ◽  
Author(s):  
Shimin Sun ◽  
Jingfan Weng ◽  
Qi Yang ◽  
Xingxiao Huang ◽  
Hanlin Zhang ◽  
...  

Abstract Introduction Doxorubicin (DOX) is a powerful anthracycline antineoplastic drug, but the clinical application of DOX is seriously limited by its dose-dependent cardiotoxicity. Ononin is a natural isoflavone glycoside and plays a key role in modulating apoptosis related signaling pathways. The aim of this study was to assess the possible cardioprotective effects of Ononin in DOX-induced cardiotoxicity and the underlying molecular mechanisms. Materials and methods Wistar rats were treated with normal saline, DOX with or without Ononin. After the last administration, cardiac function was evaluated by echocardiography. Rats were then sacrificed for histological and TUNEL analyses, with immunological detection for β-actinin, Bax, Bcl-2, GRP78, CHOP and SIRT3. An enzyme-linked immunosorbent assay was performed to assess the myocardial injury markers. H9C2 cells were treated with vehicle, DOX with or without Ononin. Then, 3-TYP was used to find out the relationship between ER stress and SIRT3. Results Ononin treatment ameliorated DOX-induced myocardial injury as demonstrated by echocardiography. Ononin partially restored DOX-induced cardiac dysfunction, both LVEF and LVFS were increased under the cotreatment of Ononin. Ononin also inhibited DOX-induced ER stress and apoptosis in rat cardiomyocytes and H9C2 cells. DOX group had a higher Bax/Bcl-2 ratio, GRP78 and CHOP expression then control group, but Ononin treatment improved these results. This effect was associated with SIRT3 activity, moreover, selective inhibition of SIRT3 blocked the protective effects of Ononin. Conclusion In the present study, we tested the hypothesis that Ononin may protect against DOX-induced cardiomyopathy through ER stress both in vitro and in vivo. Ononin is able to protect against DOX-induced cardiotoxicity by inhibiting ER stress and apoptosis, this effect may via stimulation of the SIRT3 pathway.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroaki Kanzaki ◽  
Tetsuhiro Chiba ◽  
Junjie Ao ◽  
Keisuke Koroki ◽  
Kengo Kanayama ◽  
...  

AbstractFGF19/FGFR4 autocrine signaling is one of the main targets for multi-kinase inhibitors (MKIs). However, the molecular mechanisms underlying FGF19/FGFR4 signaling in the antitumor effects to MKIs in hepatocellular carcinoma (HCC) remain unclear. In this study, the impact of FGFR4/ERK signaling inhibition on HCC following MKI treatment was analyzed in vitro and in vivo assays. Serum FGF19 in HCC patients treated using MKIs, such as sorafenib (n = 173) and lenvatinib (n = 40), was measured by enzyme-linked immunosorbent assay. Lenvatinib strongly inhibited the phosphorylation of FRS2 and ERK, the downstream signaling molecules of FGFR4, compared with sorafenib and regorafenib. Additional use of a selective FGFR4 inhibitor with sorafenib further suppressed FGFR4/ERK signaling and synergistically inhibited HCC cell growth in culture and xenograft subcutaneous tumors. Although serum FGF19high (n = 68) patients treated using sorafenib exhibited a significantly shorter progression-free survival and overall survival than FGF19low (n = 105) patients, there were no significant differences between FGF19high (n = 21) and FGF19low (n = 19) patients treated using lenvatinib. In conclusion, robust inhibition of FGF19/FGFR4 is of importance for the exertion of antitumor effects of MKIs. Serum FGF19 levels may function as a predictive marker for drug response and survival in HCC patients treated using sorafenib.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xinxin Zhang ◽  
Yating Qin ◽  
Xiaoning Wan ◽  
Hao Liu ◽  
Chao Iv ◽  
...  

Purpose. Hydroxytyrosol (HT) processes multiaspect pharmacological properties such as antithrombosis and antidiabetes. The aim of this study was to explore the antistherosclerotic roles and relevant mechanisms of HT. Methods. Male apoE-/- mice were randomly divided into 2 groups: the control group and the HT group (10 mg/kg/day orally). After 16 weeks, blood tissue, heart tissue, and liver tissue were obtained to detect the atherosclerotic lesions, histological analysis, lipid parameters, and inflammation. And the underlying molecular mechanisms of HT were also studied in vivo and in vitro. Results. HT administration significantly reduced the extent of atherosclerotic lesions in the aorta of apoE-/- mice. We found that HT markedly lowered the levels of serum TG, TC, and LDL-C approximately by 17.4% (p=0.004), 15.2% (p=0.003), and 17.9% (p=0.009), respectively, as well as hepatic TG and TC by 15.0% (p<0.001) and 12.3% (p=0.003), respectively, while inducing a 26.9% (p=0.033) increase in serum HDL-C. Besides, HT improved hepatic steatosis and lipid deposition. Then, we discovered that HT could regulate the signal flow of AMPK/SREBP2 and increase the expression of ABCA1, apoAI, and SRBI. In addition, HT reduced the levels of serum CRP, TNF-α, IL-1β, and IL-6 approximately by 23.5% (p<0.001), 27.8% (p<0.001), 18.4% (p<0.001), and 19.1% (p<0.001), respectively, and induced a 1.4-fold increase in IL-10 level (p=0.014). Further, we found that HT might regulate cholesterol metabolism via decreasing phosphorylation of p38, followed by activation of AMPK and inactivation of NF-κB, which in turn triggered the blockade of SREBP2/PCSK9 and upregulation of LDLR, apoAI, and ABCA1, finally leading to a reduction of LDL-C and increase of HDL-C in the circulation. Conclusion. Our results provide the first evidence that HT displays antiatherosclerotic actions via mediating lipid metabolism-related pathways through regulating the activities of inflammatory signaling molecules.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Kun Liu ◽  
Fei Wang ◽  
Shuo Wang ◽  
Wei-Nan Li ◽  
Qing Ye

The aim of this study was to investigate the cardioprotective effect of mangiferin (MAF) in vitro and in vivo. Oxidative stress and inflammatory injury were detected in coronary artery ligation in rats and also in hypoxia-reoxygenation- (H/R-) induced H9c2 cells. MAF inhibited myocardial oxidative stress and proinflammatory cytokines in rats with coronary artery occlusion. The ST segment of MAF treatment groups also resumed. Triphenyltetrazolium chloride (TTC) staining and pathological analysis showed that MAF could significantly reduce myocardial injury. In vitro data showed that MAF could improve hypoxia/reoxygenation- (H/R-) induced H9c2 cell activity. In addition, MAF could significantly reduce oxidative stress and inflammatory pathway protein expression in H/R-induced H9c2 cells. This study has clarified the protective effects of MAF on myocardial injury and also confirmed that oxidative stress and inflammation were involved in the myocardial ischemia-reperfusion injury (I/R) model.


2017 ◽  
Vol 37 (6) ◽  
Author(s):  
Guochao Sun ◽  
Ying Lu ◽  
Yingxia Li ◽  
Jun Mao ◽  
Jun Zhang ◽  
...  

miRNAs have been implicated in processing of cardiac hypoxia/reoxygenation (H/R)-induced injury. Recent studies demonstrated that miR-19a might provide a potential cardioprotective effect on myocardial disease. However, the effect of miR-19a in regulating myocardial ischemic injury has not been previously addressed. The present study was to investigate the effect of miR-19a on myocardial ischemic injury and identified the potential molecular mechanisms involved. Using the H/R model of rat cardiomyocytes H9C2 in vitro, we found that miR-19a was in low expression in H9C2 cells after H/R treatment and H/R dramatically decreased cardiomyocyte viability, and increased lactate dehydrogenase (LDH) release and cardiomyocyte apoptosis, which were attenuated by co-transfection with miR-19a mimic. Dual-luciferase reporter assay and Western blotting assay revealed that PTEN was a direct target gene of miR-19a, and miR-19a suppressed the expression of PTEN via binding to its 3′-UTR. We further identified that overexpression of miR-19a inhibited the expression of PTEN at the mRNA and protein levels. Moreover, PTEN was highly expressed in H/R H9C2 cells and the apoptosis induced by H/R was associated with the increase in PTEN expression. Importantly, miR-19a mimic significantly increased p-Akt levels under H/R. In conclusion, our findings indicate that miR-19a could protect against H/R-induced cardiomyocyte apoptosis by inhibiting PTEN /PI3K/p-Akt signaling pathway.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 478 ◽  
Author(s):  
Rasha Al-Rikabi ◽  
Hanady Al-Shmgani ◽  
Yaser Hassan Dewir ◽  
Salah El-Hendawy

(1) Background: Plant flavonoids are efficient in preventing and treating various diseases. This study aimed to evaluate the ability of hesperidin, a flavonoid found in citrus fruits, in inhibiting lipopolysaccharide (LPS) induced inflammation, which induced lethal toxicity in vivo, and to evaluate its importance as an antitumor agent in breast cancer. The in vivo experiments revealed the protective effects of hesperidin against the negative LPS effects on the liver and spleen of male mice. (2) Methods: In the liver, the antioxidant activity was measured by estimating the concentration of glutathione (GSH) and catalase (CAT), whereas in spleen, the concentration of cytokines including IL-33 and TNF-α was measured. The in vitro experiments including MTT assay, clonogenity test, and sulforhodamine 101 stain with DAPI (4′, 6-diamidino-2-phenylindole) were used to assess the morphological apoptosis in breast cancer cells. (3) Results: The results of this study revealed a significant increase in the IL-33 and TNF-α cytokine levels in LPS challenged mice along with a considerable elevation in glutathione (GSH); moreover, the catalase (CAT) level was higher compared to that of the control group. Cytotoxicity of the MCF-7 cell line revealed significant differences among the groups treated with different concentrations when compared to the control groups, in a concentration-dependent manner. Hesperidin significantly inhibited the colony formation of MCF7 cells when compared to that of control. Clear changes were observed in the cell shape, including cell shrinkage and chromatin condensation, which were associated with a later apoptotic stage. (4) Conclusion: The results indicate that hesperidin might be a potential candidate in preventing diseases.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Qiang Liang ◽  
Xiaoran Li ◽  
Wangning Zhou ◽  
Yu Su ◽  
Shenbao He ◽  
...  

Purpose. To use in vitro and in vivo models to evaluate Glechoma longituba extract to provide scientific evidence for this extract’s antiurolithic activity. Materials and Methods. Potassium citrate was used as a positive control group. Oxidative stress (OS) markers and the expression of osteopontin (OPN) and kidney injury molecule-1 (KIM-1) were measured to assess the protective effects of Glechoma longituba. Multiple urolithiasis-related biochemical parameters were evaluated in urine and serum. Kidneys were harvested for histological examination and the assessment of crystal deposits. Results. In vitro and in vivo experiments demonstrated that treatment with Glechoma longituba extract significantly decreased calcium oxalate- (CaOx-) induced OPN expression, KIM-1 expression, and OS compared with the positive control group (P<0.05). Additionally, in vivo rats that received Glechoma longituba extract exhibited significantly decreased CaOx deposits and pathological alterations (P<0.05) compared with urolithic rats. Significantly lower levels of oxalate, creatinine, and urea and increased citrate levels were observed among rats that received Glechoma longituba (P<0.05) compared with urolithic rats. Conclusion. Glechoma longituba has antiurolithic effects due to its possible combined effects of increasing antioxidant levels, decreasing urinary stone-forming constituents and urolithiasis-related protein expression, and elevating urinary citrate levels.


Author(s):  
Paolo Mannella ◽  
Tommaso Simoncini ◽  
Andrea Riccardo Genazzani

AbstractSex steroids are known to regulate brain function and their role is so important that several diseases are strictly correlated with the onset of menopause when estrogen-progesterone deficiency makes neural cells much more vulnerable to toxic stimuli. Although in the past years several scientists have focused their studies on in vitro and in vivo effects of sex steroids on the brain, we are still far from complete knowledge. Indeed, contrasting results from large clinical trials have made the entire issue much more complicated. Currently we know that protective effects exerted by sex steroids depend on several factors among which the dose, the health of the cells and the type of molecule being used. In this review, we present an overview of the direct and indirect effects of estrogen and progesterone on the brain with specific focus on the molecular mechanisms by which these molecules act on neural cells.


2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Mayra Rodríguez-Rodríguez ◽  
Rafael Herrera-Esparza ◽  
Juan-José Bollain y Goytia ◽  
María-Elena Pérez-Pérez ◽  
Deyanira Pacheco-Tovar ◽  
...  

The goal of the present study was to determine whether peptidylarginine deiminase PAD2 and PAD4 enzymes are present in Balb/c mouse salivary glands and whether they are able to citrullinate Ro and La ribonucleoproteins. Salivary glands from Balb/c mice were cultured in DMEM and supplemented with one of the following stimulants: ATP, LPS, TNF, IFNγ, or IL-6. A control group without stimulant was also evaluated. PAD2, PAD4, citrullinated peptides, Ro60, and La were detected by immunohistochemistry and double immunofluorescence. PAD2 and PAD4 mRNAs and protein expression were detected by qPCR and Western blot analysis. PAD activity was assessed using an antigen capture enzyme-linked immunosorbent assay. LPS, ATP, and TNF triggered PAD2 and PAD4 expression; in contrast, no expression was detected in the control group (p<0.001). PAD transcription slightly increased in response to stimulation. Additionally, PAD2/4 activity modified the arginine residues of a reporter protein (fibrinogen) in vitro. PADs citrullinated Ro60 and La ribonucleoproteins in vivo. Molecular stimulants induced apoptosis in ductal cells and the externalization of Ro60 and La ribonucleoproteins onto apoptotic membranes. PAD enzymes citrullinate Ro and La ribonucleoproteins, and this experimental approach may facilitate our understanding of the role of posttranslational modifications in the pathophysiology of Sjögren’s syndrome.


2015 ◽  
Vol 35 (2) ◽  
pp. 516-528 ◽  
Author(s):  
Jianchun Huang ◽  
Xudong Zhang ◽  
Feizhang Qin ◽  
Yingxin Li ◽  
Xiaoqun Duan ◽  
...  

Background: Previous studies have demonstrated that Millettia pulchra flavonoids (MPF) exhibit protective effects on myocardial ischemia reperfusion injury (MI/RI) in isolated rat hearts and show anti-oxidative, anti-hypoxic and anti-stress properties. Methods: In this study, the cardioprotective effects of MPF on myocardial ischemia and its underlying mechanisms were investigated by a hypoxia/ reoxygenation (H/R) injury model in vitro and a rat MI/RI model in vivo. Results: We found that the lactate dehydrogenase (LDH) and inducible nitric oxide synthase (iNOS) activities were decreased in the MPF pretreatment group, whereas the activities of constructional nitric oxide synthase (cNOS), total nitric oxide synthase (tNOS), Na+-K+-ATPase and Ca2+-Mg2+-ATPase were significantly increased. In addition, the cardiocytes were denser in the MPF groups than in the control group. The mortality rate and apoptosis rate of cardiocytes were significantly decreased. Furthermore, pretreatment with MPF in vivo significantly improved the hemodynamics, decreased malondialdehyde (MDA) abundance, increased the activities of plasma superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreased the expression of the Bax protein and ratio Bax/Bc1-2 ration. Conclusions: These results suggest that MPF is an attractive protective substance in myocardial ischemia due to its negative effects on heart rate and ionotropy, reduction of myocardial oxidative damage and modulation of gene expression associated with apoptosis.


Sign in / Sign up

Export Citation Format

Share Document