scholarly journals Using a Deflector and Crest Design to Make a Safe Spillway Operation

Author(s):  
Sorosh Esmaelizadeh ◽  
Babak Lashkar-Ara

Abstract Floods are an important hazard throughout the world. The origins of some floods are a dam failure, hydraulic structure failure as well as an improper performance of the spillway. Among these, shaft spillways are known as a flood drainage system in dams, which is submerged by increasing the level of the reservoir, so that reduces the spillway efficiency and causes over topping. Investigations show that using deflector and aeration in shaft spillways will cause the flow pattern to improve. In this study, it has been tried to experiment on the impact of a deflector located in the throat and inlet geometry of the crest on the improvement of the hydraulic performance of the shaft spillway, and decrease to some extent the hazard induced by lack of timely drainage of floods in dam reservoirs. In order to investigate the deflector effect, three constriction specimens in shaft throat with constriction area to shaft area ratio (Ad/Ai) of respectively 0.75, 0.5 and 0.25 were considered as scenarios. In each scenario, the conditions of the flow passing through 12 different specimens of spillway with Crown Wheel inlets were tested and the results were compared with the flow conditions in crown wheel spillways without deflector (reference model). The results showed that the use of deflector has an important role in reducing vortex flows and stabilizing changes in the water level of the reservoir, and also increases the discharge coefficient of the flow. The studies on reference models also showed that Crown Wheel inlets (C.W.) improved shaft spillway performance, with C.W. spillways having an average discharge coefficient of 32% higher than shaft spillways. Finally, considering optimal deflector factors and C.W. geometry, an optimal model was proposed for flood reservoir conditions.

Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 794 ◽  
Author(s):  
Rita F. Carvalho ◽  
Pedro Lopes ◽  
Jorge Leandro ◽  
Luis M. David

Gullies are sewer inlets placed in pavements usually covered by bar grates. They are the most common linking-element used to drain a wide range of flows from surface runoff into the buried drainage system. Their hydraulic behavior and their overall hydraulic performance is dependent on the flow conditions, the gully dimension, geometry, and location of the outlet device. Herein a numerical research based on Volume Of Fluid ( V O F ) to detect the interface, and on the Shear Stress Transport S S T k - ω turbulence model was conducted to study the importance of the outlet location and characterize flows through them in drainage conditions. Results provided detailed information about flow features, discharge coefficients, and efficiencies for different outlet locations. The authors identified three different regimes, R 1 , R 2 , and R 3 , and concluded that the outlet location influences the velocity field along the gully, the discharge coefficient, and the drainage efficiency. This allows for the estimation of uncertainty and its variation for different outlet positions.


2019 ◽  
Vol 5 (6) ◽  
pp. 1327-1340 ◽  
Author(s):  
Minasadat Seyedjavad ◽  
Seyed Taghi Omid Naeeni ◽  
Mojtaba Saneie

A spillway is a hydraulic structure used to provide the controlled release of surplus waters and floods from a dam into a downstream area. A side weir is a multipurpose hydraulic structure which is constructed in water conveyance systems with a height lower than that of the canal wall. When the water surface level goes up, the side weir regulates the discharge and controls the water surface in the main canal. Besides, the side weir controls and diverts floods in dam reservoirs, diverts the flow and protects the structure against the river inundations. In this research, a laboratory investigation is performed with 16 Type-A piano key weirs and three different pier heights of 10, 15 and 20cm. These weirs are studied for two cases of 1 and 2. The results show that the weirs with 15cm and 20cm heights in both cases 1 and 2 have the highest discharge coefficient  in dimensionless ratios of 0.2> H/P> 0.4 and H/P>0.5 respectively. Having reviewed previous studies, it could be concluded that the trapezoidal piano key side weir is capable of releasing a flow 1.2 times more than that of the linear trapezoidal labyrinth weir with 12 degrees angle and 1.87 times more than the one with 6 degrees angle, and 1.5 times more than that of the triangular labyrinth weir.


2017 ◽  
Vol 26 (1) ◽  
pp. 28-37
Author(s):  
Agata Majerczyk ◽  
Bogusław Michalec

The aim of the study is to analyze the impact of the culvert on the hydraulic conditions of water flow in the “R” ditch. The culvert was located on the main ditch in drainage system of Łączany barrage on the Vistula river. The research on ditch’s capacity in analyzed cross-section showed that the capacity decreased. The changes of cross-section caused by construction of the culvert substantially affect the flow conditions of water in the channel. The calculations showed that the existing dimension of culvert is not enough to pass the reliable discharge. The reliable flow was set for catchment area of 3.32 km2, not 0.67 km2, which is bigger than catchment area estimated in drainage project. It includes watercourses leading water to ditch with surrounds Kasztelan Pond, and then to “R” ditch. Discharges larger than 2.27 m3·s–1, particularly reliable flow, reach banks of the ditch “R” and flows out the channel. Discharges larger than the reliable discharge do not fit into the analyzed cross-section causing pouring out the water from the channel. On the basis of information taken from the locals and serving the system it is known that such a phenomenon occurs during the periods of heavy rains and floods.


1996 ◽  
Vol 33 (9) ◽  
pp. 9-16 ◽  
Author(s):  
John A. Swaffield ◽  
John A. McDougall

The transient flow conditions within a building drainage system may be simulated by the numerical solution of the defining equations of momentum and continuity, coupled to a knowledge of the boundary conditions representing either appliances discharging to the network or particular network terminations. While the fundamental mathematics has long been available, it is the availability of fast, affordable and accessible computing that has allowed the development of the simulations presented in this paper. A drainage system model for unsteady partially filled pipeflow will be presented in this paper. The model is capable of predicting flow depth and rate, and solid velocity, throughout a complex network. The ability of such models to assist in the decision making and design processes will be shown, particularly in such areas as appliance design and water conservation.


2019 ◽  
Vol 6 (6) ◽  
pp. 181902 ◽  
Author(s):  
Junchen Lv ◽  
Yuan Chi ◽  
Changzhong Zhao ◽  
Yi Zhang ◽  
Hailin Mu

Reliable measurement of the CO 2 diffusion coefficient in consolidated oil-saturated porous media is critical for the design and performance of CO 2 -enhanced oil recovery (EOR) and carbon capture and storage (CCS) projects. A thorough experimental investigation of the supercritical CO 2 diffusion in n -decane-saturated Berea cores with permeabilities of 50 and 100 mD was conducted in this study at elevated pressure (10–25 MPa) and temperature (333.15–373.15 K), which simulated actual reservoir conditions. The supercritical CO 2 diffusion coefficients in the Berea cores were calculated by a model appropriate for diffusion in porous media based on Fick's Law. The results show that the supercritical CO 2 diffusion coefficient increases as the pressure, temperature and permeability increase. The supercritical CO 2 diffusion coefficient first increases slowly at 10 MPa and then grows significantly with increasing pressure. The impact of the pressure decreases at elevated temperature. The effect of permeability remains steady despite the temperature change during the experiments. The effect of gas state and porous media on the supercritical CO 2 diffusion coefficient was further discussed by comparing the results of this study with previous study. Based on the experimental results, an empirical correlation for supercritical CO 2 diffusion coefficient in n -decane-saturated porous media was developed. The experimental results contribute to the study of supercritical CO 2 diffusion in compact porous media.


2010 ◽  
Vol 23 (1) ◽  
pp. 4-22 ◽  
Author(s):  
Paul Guilloteau ◽  
Romuald Zabielski ◽  
Harald M. Hammon ◽  
Cornelia C. Metges

The consequences of early-life nutritional programming in man and other mammalian species have been studied chiefly at the metabolic level. Very few studies, if any, have been performed in the gastrointestinal tract (GIT) as the target organ, but extensive GIT studies are needed since the GIT plays a key role in nutrient supply and has an impact on functions of the entire organism. The possible deleterious effects of nutritional programming at the metabolic level were discovered following epidemiological studies in human subjects, and confirmed in animal models. Investigating the impact of programming on GIT structure and function would need appropriate animal models due to ethical restrictions in the use of human subjects. The aim of the present review is to discuss the use of pigs as an animal model as a compromise between ethically acceptable animal studies and the requirement of data which can be interpolated to the human situation. In nutritional programming studies, rodents are the most frequently used model for man, but GIT development and digestive function in rodents are considerably different from those in man. In that aspect, the pig GIT is much closer to the human than that of rodents. The swine species is closely comparable with man in many nutritional and digestive aspects, and thus provides ample opportunity to be used in investigations on the consequences of nutritional programming for the GIT. In particular, the ‘sow–piglets’ dyad could be a useful tool to simulate the ‘human mother–infant’ dyad in studies which examine short-, middle- and long-term effects and is suggested as the reference model.


2021 ◽  
Author(s):  
Nicolas Gaillard ◽  
Matthieu Olivaud ◽  
Alain Zaitoun ◽  
Mahmoud Ould-Metidji ◽  
Guillaume Dupuis ◽  
...  

Abstract Polymer flooding is one of the most mature EOR technology applied successfully in a broad range of reservoir conditions. The last developments made in polymer chemistries allowed pushing the boundaries of applicability towards higher temperature and salinity carbonate reservoirs. Specifically designed sulfonated acrylamide-based copolymers (SPAM) have been proven to be stable for more than one year at 120°C and are the best candidates to comply with Middle East carbonate reservoir conditions. Numerous studies have shown good injectivity and propagation properties of SPAM in carbonate cores with permeabilities ranging from 70 to 150 mD in presence of oil. This study aims at providing new insights on the propagation of SPAM in carbonate reservoir cores having permeabilities ranging between 10 and 40 mD. Polymer screening was performed in the conditions of ADNOC onshore carbonate reservoir using a 260 g/L TDS synthetic formation brine together with oil and core material from the reservoir. All the experiments were performed at residual oil saturation (Sor). The experimental approach aimed at reproducing the transport of the polymer entering the reservoir from the sand face up to a certain depth. Three reservoir coreflood experiments were performed in series at increasing temperatures and decreasing rates to mimic the progression of the polymer in the reservoir with a radial velocity profile. A polymer solution at 2000 ppm was injected in the first core at 100 mL/h and 40°C. Effluents were collected and injected in the second core at 20 mL/h and 70°C. Effluents were collected again and injected in the third core at 4 mL/h and 120°C. A further innovative approach using reservoir minicores (6 mm length disks) was also implemented to screen the impact of different parameters such as Sor, molecular weight and prefiltration step on the injectivity of the polymer solutions. According to minicores data, shearing of the polymer should help to ensure good propagation and avoid pressure build-up at the core inlet. This result was confirmed through an injection in a larger core at Sor and at 120°C. When comparing the injection of sheared and unsheared polymer at the same concentration, core inlet impairment was suppressed with the sheared polymer and the same range of mobility reduction (Rm) was achieved in the internal section of the core although viscosity was lower for the sheared polymer. Such result indicates that shearing is an efficient way to improve injectivity while maximizing the mobility reduction by suppressing the loss of product by filtration/retention at the core inlet. This paper gives new insights concerning SPAM rheology in low permeability carbonate cores. Additionally, it provides an innovative and easier approach for screening polymer solutions to anticipate their propagation in more advanced coreflooding experiments.


Author(s):  
S. Zerobin ◽  
C. Aldrian ◽  
A. Peters ◽  
F. Heitmeir ◽  
E. Göttlich

This paper presents an experimental study of the impact of individual high-pressure turbine purge flows on the main flow in a downstream turbine center frame duct. Measurements were carried out in a product-representative one and a half stage turbine test setup, installed in the Transonic Test Turbine Facility at Graz University of Technology. The rig allows testing at engine-relevant flow conditions, matching Mach, Reynolds, and Strouhal number at the inlet of the turbine center frame. The reference case features four purge flows differing in flow rate, pressure, and temperature, injected through the hub and tip, forward and aft cavities of the high-pressure turbine rotor. To investigate the impact of each individual cooling flow on the flow evolution in the turbine center frame, the different purge flows were switched off one-by-one while holding the other three purge flow conditions. In total, this approach led to six different test conditions when including the reference case and the case without any purge flow ejection. Detailed measurements were carried out at the turbine center frame duct inlet and outlet for all six conditions and the post-processed results show that switching off one of the rotor case purge flows leads to an improved duct performance. In contrast, the duct exit flow is dominated by high pressure loss regions if the forward rotor hub purge flow is turned off. Without the aft rotor hub purge flow, a reduction in duct pressure loss is determined. The purge flows from the rotor aft cavities are demonstrated to play a particularly important role for the turbine center frame aerodynamic performance. In summary, this paper provides a first-time assessment of the impact of four different purge flows on the flow field and loss generation mechanisms in a state-of-the-art turbine center frame configuration. The outcomes of this work indicate that a high-pressure turbine purge flow reduction generally benefits turbine center frame performance. However, the forward rotor hub purge flow actually stabilizes the flow in the turbine center frame duct and reducing this purge flow can penalize turbine center frame performance. These particular high-pressure turbine/turbine center frame interactions should be taken into account whenever high-pressure turbine purge flow reductions are pursued.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1663 ◽  
Author(s):  
Lei Jiang ◽  
Mingjun Diao ◽  
Haomiao Sun ◽  
Yu Ren

The objective of this study was to evaluate the effect of the upstream angle on flow over a trapezoidal broad-crested weir based on numerical simulations using the open-source toolbox OpenFOAM. Eight trapezoidal broad-crested weir configurations with different upstream face angles (θ = 10°, 15°, 22.5°, 30°, 45°, 60°, 75°, 90°) were investigated under free-flow conditions. The volume-of-fluid (VOF) method and two turbulence models (the standard k-ε model and the SST k-w model) were employed in the numerical simulations. The numerical results were compared with the experimental results obtained from published papers. The root mean square error (RMSE) and the mean absolute percent error (MAPE) were used to evaluate the accuracy of the numerical results. The statistical results show that RMSE and MAPE values of the standard k-ε model are 0.35–0.67% and 0.50–1.48%, respectively; the RMSE and MAPE values of the SST k-w model are 0.25–0.66% and 0.55–1.41%, respectively. Additionally, the effects of the upstream face angle on the flow features, including the discharge coefficient and the flow separation zone, were also discussed in the present study.


2018 ◽  
Vol 203 ◽  
pp. 07005 ◽  
Author(s):  
Abdurrasheed Sa'id Abdurrasheed ◽  
Khamaruzaman Wan Yusof ◽  
Husna Bt Takaijudin ◽  
Aminuddin Ab. Ghani ◽  
Muhammad Mujahid Muhammad ◽  
...  

Subsurface drainage modules are important components of the Bio-ecological Drainage System (BIOECODS) which is a system designed to manage stormwater quantity and quality using constructed grass swales, subsurface modules, dry and wet ponds. BIOECODS is gradually gaining attention as one of the most ecologically sustainable solutions to the frequent flash floods in Malaysia and the rest of the world with a focus on the impact of the subsurface modules to the effectiveness of the system. Nearly two decades of post-construction research in the BIOECODS technology, there is need to review findings and areas of improvement in the system. Thus, this study highlighted the key advances and challenges in these subsurface drainage modules through an extensive review of related literature. From the study, more work is required on the hydraulic characteristics, flow attenuation and direct validation methods between field, laboratory, and numerical data. Also, there is concern over the loss of efficiency during the design life especially the infiltration capacity of the module, the state of the geotextile and hydronet over time. It is recommended for the sake of higher performance, that there should be an onsite methodology to assess the permeability, rate of clogging and condition of the geotextile as well as the hydronet over time.


Sign in / Sign up

Export Citation Format

Share Document