scholarly journals Amplified centrosomes in dendritic cells promote immune cell effector functions

2020 ◽  
Author(s):  
Ann-Kathrin Weier ◽  
Mirka Homrich ◽  
Stephanie Ebbinghaus ◽  
Robert Hauschild ◽  
Thomas Quast ◽  
...  

Abstract Centrosomes constitute structural elements organizing the mitotic spindle in animal cells for proper chromosome segregation. Centrosome numbers are tightly controlled and limited to one during interphase and two before a cell enters mitosis. Defects in regulating centrosome numbers lead to the presence of amplified centrosomes, which are a hallmark of malignant cells and sufficient to induce tumorigenesis. By contrast, amplified centrosomes are rarely observed in normal somatic cells and often removed during terminal differentiation. Here, we demonstrate the presence of amplified centrosomes in dendritic cells (DCs) during immune activation. Mature DCs accumulate centrosomes by mitotic defects and show high expression levels of polo-like kinase 2 (PLK2) leading to over-duplication of centrioles. During cell migration, amplified centrosomes tightly cluster and act as functional microtubule-organizing centers, which promote persistent locomotion. Moreover, DCs with amplified centrosomes show enhanced secretion of inflammatory cytokines and optimized T cell responses. Together, these results demonstrate a previously unappreciated role of amplified centrosomes in promoting the ability of leukocytes to enhance immune responses.

Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1346
Author(s):  
Priya Veluswamy ◽  
Max Wacker ◽  
Dimitrios Stavridis ◽  
Thomas Reichel ◽  
Hendrik Schmidt ◽  
...  

The SARS-CoV-2 virus causing COVID-19 disease has emerged expeditiously in the world and has been declared pandemic since March 2020, by World Health Organization (WHO). The destructive effects of SARS-CoV-2 infection are increased among the patients with pre-existing chronic conditions and, in particular, this review focuses on patients with underlying cardiovascular complications. The expression pattern and potential functions of SARS-CoV-2 binding receptors and the attributes of SARS-CoV-2 virus tropism in a physio-pathological state of heart and blood vessel are precisely described. Of note, the atheroprotective role of ACE2 receptors is reviewed. A detailed description of the possible detrimental role of SARS-CoV-2 infection in terms of vascular leakage, including endothelial glycocalyx dysfunction and bradykinin 1 receptor stimulation is concisely stated. Furthermore, the potential molecular mechanisms underlying SARS-CoV-2 induced clot formation in association with host defense components, including activation of FXIIa, complements and platelets, endothelial dysfunction, immune cell responses with cytokine-mediated action are well elaborated. Moreover, a brief clinical update on patient with COVID-19 disease with underlying cardiovascular complications and those who had new onset of cardiovascular complications post-COVID-19 disease was also discussed. Taken together, this review provides an overview of the mechanistic aspects of SARS-CoV-2 induced devastating effects, in vital organs such as the heart and vessels.


2013 ◽  
Vol 2013 ◽  
pp. 1-12
Author(s):  
Marisa Vulcano ◽  
María Gabriela Lombardi ◽  
María Elena Sales

Besides being the main neurotransmitter in the parasympathetic nervous system, acetylcholine (ACh) can act as a signaling molecule in nonneuronal tissues. For this reason, ACh and the enzymes that synthesize and degrade it (choline acetyltransferase and acetylcholinesterase) as well as muscarinic (mAChRs) and nicotinic receptors conform the non-neuronal cholinergic system (nNCS). It has been reported that nNCS regulates basal cellular functions including survival, proliferation, adhesion, and migration. Moreover, nNCS is broadly expressed in tumors and in different components of the immune system. In this review, we summarize the role of nNCS in tumors and in different immune cell types focusing on the expression and function of mAChRs in breast tumors and dendritic cells (DCs) and discussing the role of DCs in breast cancer.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Tammy Oth ◽  
Joris Vanderlocht ◽  
Catharina H. M. J. Van Elssen ◽  
Gerard M. J. Bos ◽  
Wilfred T. V. Germeraad

A coordinated cellular interplay is of crucial importance in both host defense against pathogens and malignantly transformed cells. The various interactions of Dendritic Cells (DC), Natural Killer (NK) cells, and T helper (Th) cells can be influenced by a variety of pathogen-associated molecular patterns (PAMPs) and will lead to enhanced CD8+effector T cell responses. Specific Pattern Recognition Receptor (PRR) triggering during maturation enables DC to enhance Th1 as well as NK helper cell responses. This effect is correlated with the amount of IL-12p70 released by DC. Activated NK cells are able to amplify the proinflammatory cytokine profile of DC via the release of IFN-γ. The knowledge on how PAMP recognition can modulate the DC is of importance for the design and definition of appropriate therapeutic cancer vaccines. In this review we will discuss the potential role of specific PAMP-matured DC in optimizing therapeutic DC-based vaccines, as some of these DC are efficiently activating Th1, NK cells, and cytotoxic T cells. Moreover, to optimize these vaccines, also the inhibitory effects of tumor-derived suppressive factors, for example, on the NK-DC crosstalk, should be taken into account. Finally, the suppressive role of the tumor microenvironment in vaccination efficacy and some proposals to overcome this by using combination therapies will be described.


2018 ◽  
Vol 36 (5_suppl) ◽  
pp. 65-65 ◽  
Author(s):  
Robert J. Canter ◽  
Ethan Aguilar ◽  
Ziming Wang ◽  
Catherine Le ◽  
Lam Khuat ◽  
...  

65 Background: Obesity is increasingly prevalent and viewed as a critical co-factor in many pathologic conditions due to metabolic, inflammatory and immune perturbations. We performed a multi-species evaluation of the impact of obesity T cell effector functions and markers of immune exhaustion. Methods: We examined the impact of obesity on PD-1 and T cell-mediated responses across different pre-clinical models (tumor, infection, and autoimmune encephalomyelitis [EAE]) and species (mouse, dog, non-human primate, and human). Results: CD4 and CD8 T cells from obese mice, dogs, non-human primates and humans displayed increases in memory T cells and PD-1 expression, as well as impaired proliferative responses compared to lean controls, indicating a greater degree of T cell exhaustion at baseline. Following immunization with myelin oligodendrocyte glycoprotein, obese mice were resistant to induction of EAE, correlating with reduced antigen-specific CD4 T cells in the central nervous system. Administration of anti-PD-1 resulted in restoration of EAE and increased antigen-specific T cell numbers in obese mice. Tumors in obese mice exhibited accelerated growth compared to lean mice, and T cells displayed higher PD-1 expression correlating with RNAseq/molecular signatures of exhaustion compared to tumor-bearing lean mice. PD-1 blockade resulted in marked anti-tumor effects only in obese mice, and not lean. Impaired viral resistance to murine cytomegalovirus (MCMV) resulted was seen in obese mice, associated with increased PD-1/PD-L1 expression, which was reversible by PD-1/PD-L1 blockade. Conclusions: Obesity results in an increase in PD-1/PD-L1 expression and inhibition of T cell responses across species, and blockade not only reverses this inhibition but also leads to markedly augmented T cell effector responses compared to lean counterparts where no effects were observed. These results highlight how the immune system has evolved to control T cell responses using checkpoints contingent on dynamic host conditions and have translational relevance for predicting both efficacy and toxicity in clinical immuno-oncology.


2009 ◽  
Vol 77 (10) ◽  
pp. 4371-4382 ◽  
Author(s):  
Javier A. Carrero ◽  
Boris Calderon ◽  
Hector Vivanco-Cid ◽  
Emil R. Unanue

ABSTRACT Listeriolysin O (LLO) is an essential virulence factor for the gram-positive bacterium Listeria monocytogenes. Our goal was to determine if altering the topology of LLO would alter the virulence and toxicity of L. monocytogenes in vivo. A recombinant strain was generated that expressed a surface-associated LLO (sLLO) variant secreted at 40-fold-lower levels than the wild type. In culture, the sLLO strain grew in macrophages, translocated to the cytosol, and induced cell death. However, the sLLO strain showed decreased infectivity, reduced lymphocyte apoptosis, and decreased virulence despite a normal in vitro phenotype. Thus, the topology of LLO in L. monocytogenes was a factor in the pathogenesis of the infection and points to a role of LLO secretion during in vivo infection. The sLLO strain was cleared by severe combined immunodeficient (SCID) mice. Despite the attenuation of virulence, the sLLO strain was immunogenic and capable of eliciting protective T-cell responses.


Author(s):  
Daniel Crean ◽  
Evelyn P. Murphy

The NR4A1–NR4A3 (Nur77, Nurr1, and Nor-1) subfamily of nuclear receptors is a group of immediate early genes induced by a pleiotropy of stimuli including peptide hormones, growth factors, cytokines, inflammatory, and physiological stimuli, and cellular stress. NR4A receptors function as potent sensors of changes in the cellular microenvironment to control physiological and pathological processes through genomic and non-genomic actions. NR4A receptors control metabolism and cardiovascular and neurological functions and mediate immune cell homeostasis in inflammation and cancer. This receptor subfamily is increasingly recognized as an important molecular connection between chronic inflammation, altered immune cell responses, and cancer development. In this review, we examine how transcriptome analysis identified NR4A1/NR4A2 receptors as transcriptional regulators in mesenchymal stromal cell (MSC) migration, cell cycle progression, and cytokine production to control local immune responses. In chronic inflammatory conditions, such as rheumatoid arthritis, NR4A receptors have been shown to modify the activity of MSC and fibroblast-like stromal cells to regulate synovial tissue hyperplasia, pathological angiogenesis, and cartilage turnover in vivo. Additionally, as NR4A1 has been observed as a major transcriptional regulator in tumor–stromal communication controlling tumorigenesis, we discuss how advances in the pharmacological control of these receptors lead to important new mechanistic insights into understanding the role of the tumor microenvironment in health and disease.


iScience ◽  
2021 ◽  
pp. 103387
Author(s):  
Hui Chen ◽  
Mindy Smith ◽  
Jasmin Herz ◽  
Tong Li ◽  
Rebecca Hasley ◽  
...  

2021 ◽  
Author(s):  
Jordan J. Baechle ◽  
David N. Hanna ◽  
Sekhar R. Konjeti ◽  
Jeffrey C. Rathmell ◽  
W. Kimryn Rathmell ◽  
...  

AbstractAdrenocortical carcinoma (ACC) is a rare but highly aggressive malignancy and nearly half of ACC tumors have been shown to overproduce and secrete adrenal steroids. Excess cortisol secretion, in particular, has been associated with poor prognosis among ACC patients. Furthermore, recent immunotherapy clinical trials demonstrated significant immunoresistance among cortisol-secreting ACC (CS-ACC) patients when compared to their non-Cortisol-secreting (nonCS-ACC) counterparts. The immunosuppressive role of excess glucocorticoid therapies and secretion is well established, however, the impact of the cortisol hypersecretion on ACC tumor microenvironment (TME), immune expression profiles, and immune cell responses remain largely undefined. In this study, we characterized the TME of ACC patients and compared the immunogenomic profiles of nonCS-ACC and CS-ACC tumors to assess the impact of differentially expressed genes (DEGs) related to immune processes on patient prognosis. Comprehensive multiplatform immunogenomic computational analyses of ACC tumors deciphered an immunosuppressive expression profile with a direct impact on patient survival. We identified several primary immunogenomic prognostic indicators and potential targets within the tumor immune landscape of CS-ACC that define a distinct TME and provide additional insight into the understanding of potential contributory mechanisms underlying failure of initial immunotherapeutic trials and poor prognosis of patients with CS-ACC.


Author(s):  
Francesco Di Virgilio

AbstractThe tumor microenvironment is rich in extracellular ATP. This nucleotide affects both cancer and infiltrating immune cell responses by acting at P2 receptors, chiefly P2X7. ATP is then degraded to generate adenosine, a very powerful immunosuppressant. The purinergic hypothesis put forward by Geoff Burnstock prompted innovative investigation in this field and provided the intellectual framework to interpret a myriad of experimental findings. This is a short appraisal of how Geoff’s inspiration influenced cancer studies and my own investigation highlighting the key role of the P2X7 receptor.


Sign in / Sign up

Export Citation Format

Share Document