scholarly journals Tumor Heterogeneity in VHL Drives Metastasis in Clear Cell Renal Cell Carcinoma

Author(s):  
Junhui Hu ◽  
Ping Tan ◽  
Moe Ishihara ◽  
Nicholas Bayley ◽  
Shiruyeh Schokrpur ◽  
...  

Abstract To study the impact of intratumoral VHL heterogeneity observed in patient ccRCC primary tumors, we engineered VHL gene deletion in three RCC models, including a new primary tumor cell line derived from an aggressive metastatic ccRCC. The VHL gene-deleted (VHL-KO) cells underwent epithelial-to-mesenchymal transition (EMT) and showed diminished proliferation and tumorigenicity compared to the parental, VHL-expressing (VHL+) cells. Renal tumors with either VHL+ or VHL-KO cells alone exhibit minimal metastatic potential. Interestingly, tumors with both cells displayed rampant lung metastasis, highlighting a novel cooperative metastatic mechanism. The poorly proliferative VHL-KO cells stimulated the proliferation, EMT and motility of neighboring VHL+ cells. We found that periostin (POSTN), a protein product overexpressed and secreted by VHL- cells, promoted metastasis by enhancing the motility of VHL-WT cells and facilitating vascular escape of tumor cells. Genetic deletion or antibody blockade of POSTN dramatically suppressed lung metastases in our preclinical models. Our work suggests a new strategy to halt progression in ccRCC by disrupting the critical metastatic crosstalk between heterogeneous cell populations within a tumor.

Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1058 ◽  
Author(s):  
Gener ◽  
Rafael ◽  
Seras-Franzoso ◽  
Perez ◽  
Pindado ◽  
...  

Therapeutic resistance seen in aggressive forms of breast cancer remains challenging for current treatments. More than half of the patients suffer from a disease relapse, most of them with distant metastases. Cancer maintenance, resistance to therapy, and metastatic disease seem to be sustained by the presence of cancer stem cells (CSC) within a tumor. The difficulty in targeting this subpopulation derives from their dynamic interconversion process, where CSC can differentiate to non-CSC, which in turn de-differentiate into cells with CSC properties. Using fluorescent CSC models driven by the expression of ALDH1A 1(aldehyde dehydrogenase 1A1), we confirmed this dynamic phenotypic change in MDA-MB-231 breast cancer cells and to identify Serine/Threonine Kinase 2 (AKT2) as an important player in the process. To confirm the central role of AKT2, we silenced AKT2 expression via small interfering RNA and using a chemical inhibitor (CCT128930), in both CSC and non-CSC from different cancer cell lines. Our results revealed that AKT2 inhibition effectively prevents non-CSC reversion through mesenchymal to epithelial transition, reducing invasion and colony formation ability of both, non-CSC and CSC. Further, AKT2 inhibition reduced CSC survival in low attachment conditions. Interestingly, in orthotopic tumor mouse models, high expression levels of AKT2 were detected in circulating tumor cells (CTC). These findings suggest AKT2 as a promising target for future anti-cancer therapies at three important levels: (i) Epithelial-to-mesenchymal transition (EMT) reversion and maintenance of CSC subpopulation in primary tumors, (ii) reduction of CTC and the likelihood of metastatic spread, and (iii) prevention of tumor recurrence through inhibition of CSC tumorigenic and metastatic potential.


Author(s):  
Salah-Eddine Lamhamedi-Cherradi ◽  
Sana Mohiuddin ◽  
Dhruva K. Mishra ◽  
Sandhya Krishnan ◽  
Alejandra Ruiz Velasco ◽  
...  

AbstractOsteosarcoma (OS) is a molecularly heterogeneous, aggressive, poorly differentiated pediatric bone cancer that frequently spreads to the lung. Relatively little is known about phenotypic and epigenetic changes that promote lung metastases. To identify key drivers of metastasis, we studied human CCH-OS-D OS cells within a previously described rat acellular lung (ACL) model that preserves the native lung architecture, extracellular matrix, and capillary network. This system identified a subset of cells—termed derived circulating tumor cells (dCTCs)—that can migrate, intravasate, and spread within a bioreactor-perfused capillary network. Remarkably, dCTCs highly expressed epithelial-to-mesenchymal transition (EMT)-associated transcription factors (EMT-TFs), such as ZEB1, TWIST, and SOX9, which suggests that they undergo cellular reprogramming toward a less differentiated state by coopting the same epigenetic machinery used by carcinomas. Since YAP/TAZ and AXL tightly regulate the fate and plasticity of normal mesenchymal cells in response to microenvironmental cues, we explored whether these proteins contributed to OS metastatic potential using an isogenic pair of human OS cell lines that differ in AXL expression. We show that AXL inhibition significantly reduced the number of MG63.2 pulmonary metastases in murine models. Collectively, we present a laboratory-based method to detect and characterize a pure population of dCTCs, which provides a unique opportunity to study how OS cell fate and differentiation contributes to metastatic potential. Though the important step of clinical validation remains, our identification of AXL, ZEB1, and TWIST upregulation raises the tantalizing prospect that EMT-TF-directed therapies might expand the arsenal of therapies used to combat advanced-stage OS.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Stella D’Oronzo ◽  
Domenica Lovero ◽  
Raffaele Palmirotta ◽  
Luigia Stefania Stucci ◽  
Marco Tucci ◽  
...  

AbstractEnumeration of circulating tumor cells (CTCs) may reflect the metastatic potential of breast cancer (BC). By using the DEPArray, we investigated CTCs with respect to their epithelial-to-mesenchymal transition phenotype and compared their genomic heterogeneity with tissue biopsies. Seventeen stage IV BC patients were enrolled. Pre-enriched CTC suspensions were stained with fluorescent-labeled antibodies to epithelial (E) and mesenchymal (M) markers. CTC samples were processed by DEPArray system and clustered in relation to their markers. DNA from CTCs, as well as from primary tumor samples, was sequenced by next generation sequencing to assess the mutational state of 50 major cancer-related genes. We identified four different CTC subsets that harbored different gene variants. The most heterogenous CTC subsets included the M+/E− phenotype, which, however, expressed only 7 repeatedly mutated genes, while in the M−/E+ subset multiple mutations affected only 2 out of 50 genes. When matching all gene variants among CTC subsets, a small number of mutations was shared by only 4 genes, namely ATM, FGFR3, PIK3CA, and TP53 that, however, were absent in primary tumors. Our results postulate that the detected mutations in all CTC subsets may be considered as genomic markers of metastatic dissemination to be investigated during early stages of BC.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2894
Author(s):  
Christian R. Pangilinan ◽  
Li-Hsien Wu ◽  
Che-Hsin Lee

Targeting metastasis is a vital strategy to improve the clinical outcome of cancer patients, specifically in cases with high-grade malignancies. Here, we employed a Salmonella-based treatment to address metastasis. The potential of Salmonella as an anticancer agent has been extensively studied; however, the mechanism through which it affects metastasis remains unclear. This study found that the epithelial-to-mesenchymal transition (EMT) inducer SNAI1 was markedly reduced in Salmonella-treated melanoma cells, as revealed by immunoblotting. Furthermore, wound healing and transwell assays showed a reduced in vitro cell migration following Salmonella treatment. Transfection experiments confirmed that Salmonella acted against metastasis by suppressing protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling, which in turn inhibited SNAI1 expression. Since it is known that metastasis is also influenced by inflammation, we partly characterized the immune infiltrates in melanoma as affected by Salmonella treatment. We found through tumor-macrophage co-culture that Salmonella treatment increased high mobility group box 1 (HMGB1) secretion in tumors to coax the polarization of macrophages in favor of an M1-like phenotype, as shown by increased inducible nitric oxide synthase (iNOS) expression and Interleukin 1 Beta (IL-1β) secretion. Data from our animal study corroborated the in vitro findings, wherein the Salmonella-treated group obtained the lowest lung metastases, longer survival, and increased iNOS-expressing immune infiltrates.


Cells ◽  
2018 ◽  
Vol 7 (7) ◽  
pp. 78 ◽  
Author(s):  
Julien Guinde ◽  
Diane Frankel ◽  
Sophie Perrin ◽  
Valérie Delecourt ◽  
Nicolas Lévy ◽  
...  

Lung cancer represents the primary cause of cancer death in the world. Malignant cells identification and characterization are crucial for the diagnosis and management of patients with primary or metastatic cancers. In this context, the identification of new biomarkers is essential to improve the differential diagnosis between cancer subtypes, to select the most appropriate therapy, and to establish prognostic correlations. Nuclear abnormalities are hallmarks of carcinoma cells and are used as cytological diagnostic criteria of malignancy. Lamins (divided into A- and B-types) are localized in the nuclear matrix comprising nuclear lamina, where they act as scaffolding protein, involved in many nuclear functions, with regulatory effects on the cell cycle and differentiation, senescence and apoptosis. Previous studies have suggested that lamins are involved in tumor development and progression with opposite results concerning their prognostic role. This review provides an overview of lamins expression in lung cancer and the relevance of these findings for disease diagnosis and prognosis. Furthermore, we discuss the link between A-type lamins expression in lung carcinoma cells and nuclear deformability, epithelial to mesenchymal transition, and metastatic potential, and which mechanisms could regulate A-type lamins expression in lung cancer, such as the microRNA miR-9.


2020 ◽  
Vol 12 ◽  
pp. 175883592090541 ◽  
Author(s):  
Marco Tucci ◽  
Stella D’Oronzo ◽  
Francesco Mannavola ◽  
Claudia Felici ◽  
Domenica Lovero ◽  
...  

Background: Circulating tumor cells (CTCs) have recently emerged as a new dynamic soluble marker for several malignancies including cutaneous melanoma (CM) and are suitable for prognostic evaluations and treatment monitoring. However, to date many limitations still hamper the wide-scale application of CTCs in CM setting, including the lack of standardized methods as well as both low levels and heterogeneity of these cells. Methods: We developed a protocol for CTC detection in CM based on immune-magnetic sorting to deplete CD45-, CD31- or CD34-positive cells, followed by dielectrophoretic DEPArray separation according to cell morphology and immunophenotype. To this end, we explored the expression of melanoma stem cell antigens (CD271, ABCB5, and RANK) and the epithelial-to-mesenchymal transition markers (N-Cad, -CD44, and -MCAM/CD146) on CTCs from 17 stage IV CM patients, and investigated their BRAF mutational status by droplet digital PCR. Results: The number of CTCs isolated from CM patients ranged from 2 to 91 cells (38 ± 6.4) with respect to healthy donors ( p < 0.0002). To confirm the melanoma origin of isolated cells, we observed an 80% agreement between their BRAFV600 mutational status and matched primary tumors. The characterization of the immune phenotype of isolated cells revealed high interindividual and intraindividual heterogeneity that was found to correlate with the clinical outcome. Conclusions: The dual-step protocol of immune-magnetic sorting and subsequent dielectrophoretic DEPArray separation, turned out to be a suitable method to isolate viable CTCs from stage IV melanoma patients and enabled quantitative and qualitative analyses on these cells, which may deserve prospective evaluation for potential use in the clinical practice.


2013 ◽  
Vol 20 (3) ◽  
pp. 391-401 ◽  
Author(s):  
Rosalyn D Ferguson ◽  
Emily J Gallagher ◽  
Dara Cohen ◽  
Aviva Tobin-Hess ◽  
Nyosha Alikhani ◽  
...  

The Her2 oncogene is expressed in ∼25% of human breast cancers and is associated with metastatic progression and poor outcome. Epidemiological studies report that breast cancer incidence and mortality rates are higher in women with type 2 diabetes. Here, we use a mouse model of Her2-mediated breast cancer on a background of hyperinsulinemia to determine how elevated circulating insulin levels affect Her2-mediated primary tumor growth and lung metastasis. Hyperinsulinemic (MKR+/+) mice were crossed with doxycycline-inducible Neu-NT (MTB/TAN) mice to produce the MTB/TAN/MKR+/+ mouse model. Both MTB/TAN and MTB/TAN/MKR+/+ mice were administered doxycycline in drinking water to induce Neu-NT mammary tumor formation. In tumor tissues removed at 2, 4, and 6 weeks of Neu-NT overexpression, we observed increased tumor mass and higher phosphorylation of the insulin receptor/IGF1 receptor, suggesting that activation of these receptors in conditions of hyperinsulinemia could contribute to the increased growth of mammary tumors. After 12 weeks on doxycycline, although no further increase in tumor weight was observed in MTB/TAN/MKR+/+ compared with MTB/TAN mice, the number of lung metastases was significantly higher in MTB/TAN/MKR+/+ mice compared with controls (MTB/TAN/MKR+/+ 16.41±4.18 vs MTB/TAN 5.36±2.72). In tumors at the 6-week time point, we observed an increase in vimentin, a cytoskeletal protein and marker of mesenchymal cells, associated with epithelial-to-mesenchymal transition and cancer-associated fibroblasts. We conclude that hyperinsulinemia in MTB/TAN/MKR+/+ mice resulted in larger primary tumors, with more mesenchymal cells and therefore more aggressive tumors with more numerous pulmonary metastases.


2013 ◽  
Vol 394 (6) ◽  
pp. 773-781 ◽  
Author(s):  
Dorina Gheorgheosu ◽  
Michaela Jung ◽  
Bilge Ören ◽  
Tobias Schmid ◽  
Cristina Dehelean ◽  
...  

Abstract Betulinic acid (BA) exhibits antitumoral activity by blocking proliferation, invasion, and angiogenesis. However, the impact of BA on epithelial-to-mesenchymal transition (EMT), a hallmark of cancer metastasis induced among others by neutrophil gelatinase-associated lipocalin (NGAL), remains unknown. The present study aimed at determining the effect of BA on NGAL-induced EMT. In A375 melanoma cells, BA downregulated mesenchymal markers, increased epithelial markers, and inhibited cytoskeletal reorganization. In addition, BA limited endogenous NGAL production and further suppressed EMT induced by exogenously added NGAL and the corresponding invasive cellular phenotype. In conclusion, BA interferes with EMT-associated changes, a mechanism to antagonize invasive melanoma cells.


Sign in / Sign up

Export Citation Format

Share Document