scholarly journals Multiband Slotted Planar Inverted-F Antenna using Reactive Impedence Surface for Wireless Applicatios

Author(s):  
Tejaswi Mahaling J Jadhav

Abstract This research work presents a low profile slotted planar invertedF antenna (PIFA) on a reactive impedance surface (RIS) for multiband. The quad-band frequency antenna for 2.4 GHz (WLAN), 4.2 GHz (C-band satellite downlink), 7.1 GHz (C-band satellite uplink), and 9 GHz (X-band )for wireless applications. The structure of the proposed PIFA has a compacted patch size of 23.33 mm × 2.66 mm × 1 mm placed on a dielectric substrate flame retardant 4(FR4) material, along with tangent loss = 0.02. The proposed antenna used two dielectric substrates whose heights are h1 = 1.59 mm and h2 = 1 mm . The rectangular slot is added in a radiating patch of the PIFA for multiband operations. The proposed antenna improves the parameters such as reduction scale, efficiency, narrow bandwidth, and gain enhancement. The slotted PIFA shows a quad-band with an S11 <-10 dB bandwidth of approximately 15.83% (2.24-2.62 GHz), 11.19% (3.93-4.4GHz), 12.67% (6.90-7.80GHz) and 10.55% (8.29-9.24GHz) under measurement. The proposed antenna design is excited by 50Ω microstrip line feed. The antenna exhibits radiation pattern, gain, and impedance matching across their operating bandwidths to demonstrate the benefits of multiple PIFA.

Author(s):  
Davinder Parkash ◽  
Rajesh Khanna

This research work presents a microstrip-fed antenna that is small, low-profile, planar, and suitable for WLAN/WiMAX and partially ultra-wideband (UWB) applications. The radiating element of the proposed antenna consists of rectangular-shaped ring embedded with a three inverted “S”-shaped and inverted “C”-shaped strips. This antenna is capable of generating penta bands having good impedance matching with wideband characteristics. Prototype of the proposed antenna has been designed, simulated, fabricated, and tested. The overall small size of the antenna is 24.75 mm × 27.39 mm × 1.6 mm with volumetric size of 1 cm3. To understand the characteristics of the proposed antenna, the parametric studies are being performed. The return loss of the proposed antenna shows fair agreement with the simulated and measured results.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Qun Luo ◽  
Huiping Tian ◽  
Zhitong Huang ◽  
Xudong Wang ◽  
Zheng Guo ◽  
...  

A unidirectional dual-band coplanar waveguide fed antenna (DB-CPWFA) loaded with a reflector is presented in this paper. The reflector is made of an electric ground plane, a dielectric substrate, and artificial magnetic conductor (AMC) which shows an effective dual operational bandwidth. Then, the closely spaced AMC reflector is employed under the DB-DPWFA for performance improvement including unidirectional radiation, low profile, gain enhancement, and higher front-to-back (F/B) ratio. The final antenna design exhibits an 8% and 13% impedance bandwidths for 2.45 GHz and 5.8 GHz frequency regions, respectively. The overall gain enhancement of about 4 dB is achieved. The F/B ratio is approximate to 20 dB with a 16 dB improvement. The measured results are inconsistent with the numerical values. The presented design is a suitable candidate for radio frequency identification (RFID) reader application.


Wireless communication systems require antennas of multiband support,small design dimensions and higher gain. To provide size reduction and better impedance matching, geometrical interpreted fractal antenna is suitable. This allows the antenna to operate at different frequencies. To rise performances with respect to bandwidth, gain and multiband resonance, an array can fulfil the requirements. This paper shows the design and simulation of the Sierpinski Gasket array for multiband applications (4GHz to 8GHz, 8GHz to 12GHz) up to 4th iteration. The fractal geometry for patch antenna is selected due to low cross polarization radiation and ease of fabrication. Sierpinski gasket is known by the name, Sierpinski triangle having triangular slots using mid-point geometry of the triangle. This array makes use of micro strip feed where FR4 epoxy is used as the dielectric substrate. A low profile dielectric is used to get the radiation in maximum amount. This antenna finds its uses in satellite communications and transmissions,Wi-Fi. The simulation is carried out by using High Frequency Structure Simulator HFSS V13 software for the proposed antenna.


2016 ◽  
Vol 9 (4) ◽  
pp. 859-864 ◽  
Author(s):  
Alaknanda Kunwar ◽  
Anil Kumar Gautam

A microstrip transmission line fed fork-shaped planar antenna is proposed for Bluetooth, WLAN, and WiMAX applications. The antenna made of a microstrip feed line, fork-shape patch on one side and defected ground plane on the other side of dielectric substrate. A fork-shape is formed by two side circular arms and a rectangular central arm. The inverted T-shaped ground plane with a rectangular slot in the center arm is used to increase the bandwidth with better impedance matching of the lower band. The antenna is practically fabricated to validate the design. The antenna resonate dual band to cover an entire the WLAN and WiMAX bands. The antenna shows the measured bandwidth of 410 MHz (2.26–2.67) and 3.78 GHz (3.0–6.78 GHz) at lower and upper bands, respectively.


Author(s):  
Melvin Chamakalayil Jose ◽  
Sankararajan Radha ◽  
Balakrishnapillai Suseela Sreeja ◽  
Mohammed Gulam Nabi Alsath ◽  
Pratap Kumar

Abstract This paper presents a novel compact dual-band printed antenna with an omnidirectional radiation pattern for 5G WLAN. The antenna element comprises a star-shaped patch with six disc-shaped elements at the top and a defected ground structure at the bottom, having a radius of 3.77 mm for both. The proper feeding point and alignment with its element parameters help to achieve good impedance matching. The proposed antenna has a single center feed, a low profile, and a straightforward compact structure without any feeding complexity. A high reception fidelity antenna with comparable bandwidth and moderate gain is presented. The prototype radiator was printed on a 4 mm radius and a 1.6 mm thick dielectric substrate (Rogers RT/Duroid 5880), with a dielectric constant of 2.2. The designed antenna is fabricated and measured to validate the simulation result. The measured impedance bandwidth of 1.3 GHz (27.5–28.8 GHz) and 2.2 GHz (32.45–34.65 GHz) with a respective measured gain of 1.1 and 3.2 dBi are achieved at 28 and 34 GHz. The simulated radiation efficiency of above 95% is achieved for both bands. A good agreement between simulated and measured results of the proposed work shows that the proposed antenna is suitable for 5G short-range WLAN communications.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 125
Author(s):  
Shaza El-Nady ◽  
Rania R. Elsharkawy ◽  
Asmaa I. Afifi ◽  
Anwer S. Abd El-Hameed

This paper exhibits a high-gain, low-profile dipole antenna array (DAA) for 5G applications. The dipole element has a semi-triangular shape to realize a simple input impedance regime. To reduce the overall antenna size, a substrate integrated cavity (SIC) is adopted as a power splitter feeding network. The transition between the SIC and the antenna element is achieved by a grounded coplanar waveguide (GCPW) to increase the degree of freedom of impedance matching. Epsilon-near-zero (ENZ) metamaterial technique is exploited for gain enhancement. The ENZ metamaterial unit cells of meander shape are placed in front of each dipole perpendicularly to guide the radiated power into the broadside direction. The prospective antenna has an overall size of 2.58 λg3 and operates from 28.5 GHz up to 30.5 GHz. The gain is improved by 5 dB compared to that of the antenna without ENZ unit cells, reaching 11 dBi at the center frequency of 29.5 GHz. Measured and simulated results show a reasonable agreement.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3809
Author(s):  
Mohammed M. Bait-Suwailam ◽  
Isidoro I. Labiano ◽  
Akram Alomainy

In this paper, impedance matching enhancement of a grounded wearable low-profile loop antenna is investigated using a high-impedance surface (HIS) structure. The wearable loop antenna along with the HIS structure is maintained low-profile, making it a suitable candidate for healthcare applications. The paper starts with investigating, both numerically and experimentally, the effects of several textile parameters on the performance of the wearable loop antenna. The application of impedance enhancement of wearable grounded loop antenna with HIS structure is then demonstrated. Numerical full-wave simulations are presented and validated with measured results. Unlike the grounded wearable loop antenna alone with its degraded performance, the wearable loop antenna with HIS structure showed better matching performance improvement at the 2.45 GHz-band. The computed overall far-field properties of the wearable loop antenna with HIS structure shows good performance, with a maximum gain of 6.19 dBi. The effects of bending the wearable loop antenna structure with and without HIS structure as well as when in close proximity to a modeled human arm are also investigated, where good performance was achieved for the case of the wearable antenna with the HIS structure.


Author(s):  
Yanning Yuan ◽  
Yuchen Zhao ◽  
Xiaoli Xi

Abstract A single-layer ultra-wideband (UWB) stop-band frequency selective surface (FSS) has several advantages in wireless systems, including a simple design, low debugging complexity, and an appropriate thickness. This study proposes a miniaturized UWB stop-band FSS design. The proposed FSS structure consists of a square-loop and metalized vias that are arranged on a single layer substrate; it has an excellent angle and polarization-independent characteristics. At an incident angle of 60°, the polarization response frequencies of the transverse electric and magnetic modes only shifted by 0.003 f0 and 0.007 f0, respectively. The equivalent circuit models of the square-loop and metallized vias structure are analysed and the accuracy of the calculation is evaluated by comparing the electromagnetic simulation. The 20 × 20 array constitutes an FSS reflector with a unit size of 4.2 mm × 4.2 mm (less than one-twentieth of the wavelength of 3 GHz), which realizes an UWB quasi-constant gain enhancement (in-band flatness is <0.5 dB). Finally, the simulation results were verified through sample processing and measurement; consistent results were obtained. The FSS miniaturization design method proposed in this study could be applied to the design of passband FSS (complementary structure), antennas and filters, among other applications.


1992 ◽  
Vol 70 (2-3) ◽  
pp. 173-178 ◽  
Author(s):  
Ioanna Diamandi ◽  
Costas Mertzianidis ◽  
John N. Sahalos

The far-field pattern characteristics of line sources lying between the slabs of a four-dielectric substrate configuration are presented. The patterns are calculated for several cases of the substrate thickness as well as for several line-source locations. The considerations that are made give useful applications in remote sensing and microstrip antennas.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Alibakhshikenari ◽  
Bal S. Virdee ◽  
Ayman A. Althuwayb ◽  
Leyre Azpilicueta ◽  
Naser Ojaroudi Parchin ◽  
...  

AbstractThe paper demonstrates an effective technique to significantly enhance the bandwidth and radiation gain of an otherwise narrowband composite right/left-handed transmission-line (CRLH-TL) antenna using a non-Foster impedance matching circuit (NF-IMC) without affecting the antenna’s stability. This is achieved by using the negative reactance of the NF-IMC to counteract the input capacitance of the antenna. Series capacitance of the CRLH-TL unit-cell is created by etching a dielectric spiral slot inside a rectangular microstrip patch that is grounded through a spiraled microstrip inductance. The overall size of the antenna, including the NF-IMC at its lowest operating frequency is 0.335λ0 × 0.137λ0 × 0.003λ0, where λ0 is the free-space wavelength at 1.4 GHz. The performance of the antenna was verified through actual measurements. The stable bandwidth of the antenna for |S11|≤ − 18 dB is greater than 1 GHz (1.4–2.45 GHz), which is significantly wider than the CRLH-TL antenna without the proposed impedance matching circuit. In addition, with the proposed technique the measured radiation gain and efficiency of the antenna are increased on average by 3.2 dBi and 31.5% over the operating frequency band.


Sign in / Sign up

Export Citation Format

Share Document