Optical, Morphological, and Structural Properties of Porous Silicon Tablets.

Author(s):  
Francisco Severiano Carrillo ◽  
Godofredo García Salgado ◽  
Martin Salazar Villanueva

Abstract Porous silicon (PS) is a material whit a great interest due to its optical (photoluminescent) and chemical (reactive surface) properties, for this reason, it is important to find new ways to be applied in the development of new devices. In this work the optic, chemical and morphologic properties of PS compressed into a tablet were characterized. The porous silicon was removed physically from the crystalline silicon and then was compressed to obtain a tablet. The optical characterization was performed through photoluminescence (PL) spectra. The PL spectrum from the PS tablet showed a small shift to lower wavelengths in comparison with the PS layers used to obtain the tablet. The x-ray diffraction pattern showed a loss in PS tablet crystallinity after being subjected to the compression process. The morphological characterization was carried out with a scanning electron microscope and showed a compact surface with high rugosity. This result was supported by the profilometry analysis, which also showed an irregular surface. The chemical properties of the surface were characterized with Fourier transform infrared spectroscopy (FTIR). The FTIR characterization showed an oxidized and highly hydrogenated surface.

2012 ◽  
Vol 476-478 ◽  
pp. 1794-1797 ◽  
Author(s):  
Su Xia Guo ◽  
Yi Tan ◽  
Jia Yan Li ◽  
Ya Qiong Li ◽  
Chen Guang Liu

The porous silicon layer was fabricated by electrochemical etching process using an aqueous HF-based electrolyte. The characterizations of porous silicon layer were investigated by Emission-type scanning electron microscope (SEM), Raman spectra and X-ray diffraction (XRD). With the current density increasing, the pore diameter and density become much bigger. This result also was confirmed by Raman spectra and XRD result of samples, which revealed the decreasing of grain size of silicon. The resistivity of crystalline silicon increased when the porous layer was removed after heat treatment at 850°C for 2.5h, which should be attributed to the gettering process of porous silicon.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 129
Author(s):  
Liana Vella-Zarb ◽  
Ulrich Baisch

There is much interest and focus on solid forms of famciclovir. However, in spite of the abundance of reported differences in oral bioavailability, compressibility, and other physical–chemical properties of the various crystal forms of this drug, very little precise structural analysis is available in the literature to date. The form used in the commercial formulation is the anhydrous form I. Patents and patent applications report three different anhydrous crystalline forms on the basis of unindexed powder diffraction patterns. Single-crystal and variable-temperature X-ray diffraction experiments using the commercially available anhydrous form of famciclovir were carried out and led not only to the crystal structure determination of the anhydrous form I, but also to discovery of a new crystal form of anhydrous famciclovir from powder data.


1994 ◽  
Vol 342 ◽  
Author(s):  
I. BÁrsony ◽  
J.G.E. Klappe ◽  
É. Vázsonyi ◽  
T. Lohner ◽  
M. Fried

ABSTRACTChemical and mechanical stability of porous silicon layers (PSL) is the prerequisite of any active (luminescent) or passive (e.g. porous substrate) integrated applications. In this work X-ray diffraction (XRD) was used to analyze quantitatively the strain distribution obtained in different morphology PSL that were prepared on (100) p and p+Si substrates. Tetragonal lattice constant distortion can be as high as 1.4% in highly porous “as-prepared” samples. Incoherent optical heating RTO is governed by the absorption in the oxidized specimen. PSL show vertical inhomogeneity according to interpretation of spectroscopic ellipsometry (SE) data. Oxygen incorporation during RTO is controlled by specific surface (in p+ proportional, in p inversely proportional with porosity), while the developing compressive stress depends on pore size, and decreases with porosity in both morphologies.


1987 ◽  
Vol 113 ◽  
Author(s):  
Scott Schlorholtz ◽  
Ken Bergeson ◽  
Turgut Demirel

ABSTRACTThe physical and chemical properties of fly ash produced at Ottumwa Generating Station have been monitored since April, 1985. The fly ash is produced from burning a low sulfur, sub-bituminous coal obtained from the Powder River Basin near Gillette, Wyoming. One-hundred and sixty samples of fly ash were obtained during the two year period. All of the samples were subjected to physical testing as specified by ASTM C 311. About one-hundred of the samples were also subjected to a series of tests designed to monitor the self-cementing properties of the fly ash. Many of the fly ash samples were subjected to x-ray diffraction and fluorescence analysis to define the mineralogical and chemical composition of the bulk fly ash as a function of sampling date. Hydration products in selected hardened fly ash pastes, were studied by x-ray diffraction and scanning electron microscopy. The studies indicated that power plant operating conditions influenced the compressive strength of the fly ash paste specimens. Mineralogical and morphological studies of the fly ash pastes indicated that stratlingite formation occurred in the highstrength specimens, while ettringite was the major hydration product evident in the low-strength specimens.


2013 ◽  
Vol 832 ◽  
pp. 589-595 ◽  
Author(s):  
N.A. Edama ◽  
A. Sulaiman ◽  
K.H. Ku Hamid ◽  
M.N. Muhd Rodhi ◽  
Mohibah Musa ◽  
...  

This study analyzed the effects of sulphuric acid (H2SO4) treatment on pysico-chemical properties and morphological changes of clay obtained from Sg. Sayong, Perak. The clay was ground and sieved to <150μm and treated with different concentrations of H2SO4. The treatment was completed by refluxing the clay with different concentration of H2SO4 (1M, 5M and 10M ) at 100 °C for 4 hours and followed by calcination at 500 °C for 1 hour. The physic-chemical properties and morphological changes of the untreated and treated clay were compared using Surface Area Analyser, X-Ray Diffraction (XRD), Field Emission Scanning Electron Micrograph (FESEM), X-Ray Diffraction (XRD) and Fourier Transformed Infrared Spectroscopy (FTIR). The results showed that acid treatment of 5M increased the surface area from 25 m2/g to 75 m2/g and the pore volume increased from 0.1518 cc/g to 0.3546 cc/g. The nanopore size of the clay decreased from 24.8 nm to 19.4 nm after treated with acid. This can be explained due to the elimination of the exchangeable cations and generation of microporosity. The results of XRF showed SiO2 increased from 58.34% to 74.52% and Al2O3 reduced from 34.6% to 18.31%. The mineral oxides such as Fe2O3, MgO, CaO, K2O and TiO2 also reduced. This concluded that H2SO4 treatment has led to significant removal of octahedral Al3+, Fe3+ cations and other impurities. In conclusion, this study showed the physico-chemical properties and morphology of Sayong clay were improved once treated with H2SO4 and therefore suggests better supporting material for enzyme immobilization.


2003 ◽  
Vol 802 ◽  
Author(s):  
R. G. Haire ◽  
S. Heathman ◽  
T. Le Bihan ◽  
A. Lindbaum ◽  
M. Iridi

ABSTRACTOne effect of pressure on elements and compounds is to decease their interatomic distances, which can bring about dramatic perturbations in their electronic nature and bonding, which can be reflected in changes in physical and/or chemical properties. One important issue in the actinide series of elements is the effect of pressure on the 5f-electrons. We have probed changes in electronic behavior with pressure by monitoring structure by X-ray diffraction, and have studied several actinide metals and compounds from thorium through einsteinium. These studies have employed angle dispersive diffraction using synchrotron radiation, and energy dispersive techniques via conventional X-ray sources. The 5f-electrons of actinide metals and their alloys are often affected significantly by pressure, while with compounds, the structural changes are often not linked to the involvement of 5 f-electron. We shall present some of our more recent findings from studies of selected actinide metals, alloys and compounds under pressure. A discussion of the results in terms of the changes in electronic configurations and bonding with regard to the element's position in the series is also addressed.


1996 ◽  
Vol 276 (1-2) ◽  
pp. 1-6 ◽  
Author(s):  
Daniel Bellet ◽  
Gérard Dolino

2018 ◽  
Vol 7 (3.11) ◽  
pp. 48
Author(s):  
Kevin Alvin Eswar ◽  
Mohd Husairi Fadzillah Suhaimi ◽  
Muliyadi Guliling ◽  
Zuraida Khusaimi ◽  
Mohamad Rusop ◽  
...  

ZnO Nanostructures have been successfully deposited on of Porous silicon (PSi) via wet colloid chemical approach. PSi was prepared by electrochemical etching method. ZnO/PSi thin films were annealed in different temperature in the range of 300 °C to 700 °C. Surface morphology studies were conducted using field emission scanning microscopy (FESEM). Flower-like structures of ZnO were clearly seen at annealing temperature of 500 °C. The X-ray diffraction spectra (XRD) have been used to investigate the structural properties. There are three dominant peaks referred to plane (100), (002) and (101) indicates that ZnO has a polycrystalline hexagonal wurtzite structures. Plane (002) shows the highest intensities at annealing temperature of 500 °C. Based on plane (002) analysis, the sizes were in range of 30.78 nm to 55.18. In addition, it was found that the texture coefficient of plane (002) is stable compared to plane (100) and (101). 


2016 ◽  
Vol 34 (2) ◽  
pp. 412-417
Author(s):  
Esra Öztürk

AbstractIn this work, aluminate type phosphorescence materials were synthesized via the solid state reaction method and the photoluminescence (PL) properties, including excitation and emission bands, were investigated considering the effect of trace amounts of activator (Eu3+) and co-activator (Dy3+). The estimated thermal behavior of the samples at certain temperatures (> 1000 °C) during heat treatment was characterized by differential thermal analysis (DTA) and thermogravimetry (TG). The possible phase formation was characterized by X-ray diffraction (XRD). The morphological characterization of the samples was performed by scanning electron microscopy (SEM). The PL analysis of three samples showed maximum emission bands at around 610 nm, and additionally near 589 nm, 648 nm and 695 nm. The bands were attributed to typical transitions of the Eu3+ ions.


2013 ◽  
Vol 665 ◽  
pp. 254-262 ◽  
Author(s):  
J.R. Rathod ◽  
Haresh S. Patel ◽  
K.D. Patel ◽  
V.M. Pathak

Group II-VI compounds have been investigated largely in last two decades due to their interesting optoelectronic properties. ZnTe, a member of this family, possesses a bandgap around 2.26eV. This material is now a day investigated in thin film form due to its potential towards various viable applications. In this paper, the authors report their investigations on the preparation of ZnTe thin films using vacuum evaporation technique and their structural and optical characterizations. The structural characterization, carried out using an X-ray diffraction (XRD) technique shows that ZnTe used in present case possesses a cubic structure. Using the same data, the micro strain and dislocation density were evaluated and found to be around 1.465×10-3lines-m2and 1.639×1015lines/m2respecctively. The optical characterization carried out in UV-VIS-NIR region reveals the fact that band gap of ZnTe is around 2.2eV in present case. In addition to this, it was observed that the value of bandgap decreases as the thickness of films increases. The direct transitions of the carries are involved in ZnTe. Using the data of UV-VIS-NIR spectroscopy, the transmission coefficient and extinction coefficient were also calculated for ZnTe thin films. Besides, the variation of extinction coefficient with wavelength has also been discussed here.


Sign in / Sign up

Export Citation Format

Share Document