scholarly journals Oxidative Stress and Calcium Dyshomeostasis Mediated CPF-Induces EPC Cell Apoptosis and Necroptosis

Author(s):  
Zhiying Miao ◽  
Jiawen Cui ◽  
Meijin Yu ◽  
Xiaohua Teng

Abstract Chlorpyrifos (CPF) is a broadly used organophosphate insecticide, and as environmental contamination has been confirmed to be harmful to the health of humans and animals, the effects of CPF on fish are still unclear. We aim to detect whether CPF has effects on the common carps, and identify the mechanisms of the effects. In accordance with the IC50 of CPF for epithelioma papulosum cyprini (EPC) cells was 8.945 µM, 0, 3, 5 and 7 µM CPF were marked as C, L, M and H group. The results indicated that CPF exposure led to oxidative stress in EPC cells. Moreover, Calcium ion (Ca2+) imaging indicated that CPF triggers Ca2+ dyshomeostasis, as induced ER Ca2+ fluxed into cytoplasm and mitochondrial, and mediates endoplasmic reticulum (ER) stress and mitochondrial Ca2+ overload, which have further confirmed with the increased transcription of ER stress related genes. Meanwhile, CPF induced collapse of mitochondrial membrane potential (MMP), enhancement of ROS generation and depletion of ATP level in both cytoplasm and mitochondrial, substantiated mitochondrial dysfunction has been evoked. Besides, the AO/EB staining and flow cytometry analysis ascertained that CPF induces apoptosis and necroptosis in EPC cells. Hence, we further verified that via determining the expression of apoptotic pathway genes and necroptotic pathway genes. Consequently, we illuminated the mechanisms of CPF effects on the common carps from the perspective of Ca2+ homeostasis, and provided a novel concept for investigating the toxicity of CPF as environmental pollution on aquatic organisms.

Author(s):  
JaeSang Ko ◽  
Ji-Young Kim ◽  
Min Kyung Chae ◽  
Eun Jig Lee ◽  
Jin Sook Yoon

We examined endoplasmic reticulum (ER) stress-related gene expression in orbital tissues from patients with Graves’ orbitopathy (GO) and the effects of silencing protein kinase RNA-like endoplasmic reticulum kinase (PERK) in primary orbital fibroblast cultures to demonstrate the therapeutic potential of PERK-modulating agents in GO management. The expression of ER stress related genes in orbital tissue harvested from individuals with or without GO was studied using real-time polymerase chain reaction. The role of PERK in GO pathogenesis was examined through small-interfering RNA (siRNA)-mediated silencing in cultured primary orbital fibroblasts. Intracellular reactive oxygen species (ROS) levels induced in response to cigarette smoke extract (CSE) or hydrogen peroxide were measured using 5-(and 6)-carboxy-20,70-dichlorodihydrofluorescein diacetate staining and flow cytometry. Cells were stained with Oil Red O, and adipogenesis-related transcription factor expression was evaluated through western blotting after adipogenic differentiation. PERK, activating transcription factor 4 (ATF4), and CCAAT-enhancer-binding protein (C/EBP)-homologous protein(CHOP)mRNA levels were significantly higher in GO orbital tissues than in non-GO orbital tissues. PERK silencing inhibited CSE- or hydrogen peroxide-induced ROS generation. After adipogenic differentiation, GO orbital fibroblasts revealed decreased lipid droplets and downregulation of C/EBPα, C/EBPβ, and peroxisome proliferator-activator gamma (PPARγ) in PERK siRNA-transfected cells. The orbital tissues of patients with GO were exposed to chronic ER stress and subsequently exhibited enhanced unfolded protein response (especially through the PERK pathway). PERK silencing reduced oxidative stress and adipogenesis in GO orbital fibroblasts in vitro. Our results imply that PERK-modulating agents can potentially be used to manage GO.


2016 ◽  
Vol 28 (2) ◽  
pp. 1 ◽  
Author(s):  
Robert John Aitken ◽  
Zamira Gibb ◽  
Mark A. Baker ◽  
Joel Drevet ◽  
Parviz Gharagozloo

Spermatozoa are highly vulnerable to oxidative attack because they lack significant antioxidant protection due to the limited volume and restricted distribution of cytoplasmic space in which to house an appropriate armoury of defensive enzymes. In particular, sperm membrane lipids are susceptible to oxidative stress because they abound in significant amounts of polyunsaturated fatty acids. Susceptibility to oxidative attack is further exacerbated by the fact that these cells actively generate reactive oxygen species (ROS) in order to drive the increase in tyrosine phosphorylation associated with sperm capacitation. However, this positive role for ROS is reversed when spermatozoa are stressed. Under these conditions, they default to an intrinsic apoptotic pathway characterised by mitochondrial ROS generation, loss of mitochondrial membrane potential, caspase activation, phosphatidylserine exposure and oxidative DNA damage. In responding to oxidative stress, spermatozoa only possess the first enzyme in the base excision repair pathway, 8-oxoguanine DNA glycosylase. This enzyme catalyses the formation of abasic sites, thereby destabilising the DNA backbone and generating strand breaks. Because oxidative damage to sperm DNA is associated with both miscarriage and developmental abnormalities in the offspring, strategies for the amelioration of such stress, including the development of effective antioxidant formulations, are becoming increasingly urgent.


2018 ◽  
Author(s):  
Hadhemi Kaddour ◽  
Yosra Hamdi ◽  
David Vaudry ◽  
Jérôme Leprince ◽  
Hubert Vaudry ◽  
...  

AbstractOxidative stress, associated with various neurodegenerative diseases, induces imbalance in ROS generation, impairs cellular antioxidant defences and finally triggers both neurons and astroglial cell death by apoptosis. Astrocytes specifically synthesize and release endozepines, a family of regulatory peptides, including the octadecaneuropeptide (ODN). We have previously reported that ODN is a potent neuroprotective agent that prevents 6-OHDA-induced apoptotic neuronal death. The purpose of the present study was to investigate the potential glioprotective effect of ODN on 6-OHDA-induced oxidative stress and cell death in cultured rat astrocytes. Incubation of astrocytes with graded concentrations of ODN (10−14 to 10−8 M) inhibited 6-OHDA-evoked cell death in a concentration- and time-dependent manner. In addition, ODN prevented the decrease of mitochondrial activity and caspase-3 activation induced by 6-OHDA. Toxin-treated cells exhibited high level of ROS associated with a generation of H2O2 and O2°-and a reduction of both SOD and catalase activities. Co-treatment of astrocytes with low concentrations of ODN dose dependently blocked 6-OHDA-evoked ROS production and inhibition of antioxidant enzymes activities. Taken together, these data demonstrate that ODN is a potent glioprotective agent that prevents 6-OHDA-induced oxidative stress and apoptotic cell death. ODN is thus a potential candidate to delay neuronal damages in various pathological conditions involving oxidative neurodegeneration.


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Takhellambam S. Devi ◽  
Icksoo Lee ◽  
Maik Hüttemann ◽  
Ashok Kumar ◽  
Kwaku D. Nantwi ◽  
...  

Thioredoxin Interacting Protein (TXNIP) mediates retinal inflammation, gliosis, and apoptosis in experimental diabetes. Here, we investigate the temporal response of Muller glia to high glucose (HG) and TXNIP expression using a rat Muller cell line (rMC1) in culture. We examined if HG-induced TXNIP expression evokes host defense mechanisms in rMC1 in response to metabolic abnormalities. HG causes sustained up-regulation of TXNIP (2 h to 5 days), ROS generation, ATP depletion, ER stress, and inflammation. Various cellular defense mechanisms are activated by HG: (i) NLRP3 inflammasome, (ii) ER stress response (sXBP1), (iii) hypoxic-like HIF-1αinduction, (iv) autophagy/mitophagy, and (v) apoptosis. We also foundin vivothat streptozocin-induced diabetic rats have higher retinal TXNIP and innate immune response gene expression than normal rats. Knock down of TXNIP by intravitreal siRNA reduces inflammation (IL-1β) and gliosis (GFAP) in the diabetic retina. TXNIP ablationin vitroprevents ROS generation, restores ATP level and autophagic LC3B induction in rMC1. Thus, our results show that HG sustains TXNIP up-regulation in Muller glia and evokes a program of cellular defense/survival mechanisms that ultimately lead to oxidative stress, ER stress/inflammation, autophagy and apoptosis. TXNIP is a potential target to ameliorate blinding ocular complications of diabetic retinopathy.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Leonid Minasyan ◽  
Parameswaran G. Sreekumar ◽  
David R. Hinton ◽  
Ram Kannan

Age-related macular degeneration (AMD) is the leading cause of severe and irreversible vision loss and is characterized by progressive degeneration of the retina resulting in loss of central vision. The retinal pigment epithelium (RPE) is a critical site of pathology of AMD. Mitochondria and the endoplasmic reticulum which lie in close anatomic proximity to each other are targets of oxidative stress and endoplasmic reticulum (ER) stress, respectively, and contribute to the progression of AMD. The two organelles exhibit close interactive function via various signaling mechanisms. Evidence for ER-mitochondrial crosstalk in RPE under ER stress and signaling pathways of apoptotic cell death is presented. The role of humanin (HN), a prominent member of a newly discovered family of mitochondrial-derived peptides (MDPs) expressed from an open reading frame of mitochondrial 16S rRNA, in modulation of ER and oxidative stress in RPE is discussed. HN protected RPE cells from oxidative and ER stress-induced cell death by upregulation of mitochondrial GSH, inhibition of ROS generation, and caspase 3 and 4 activation. The underlying mechanisms of ER-mitochondrial crosstalk and modulation by exogenous HN are discussed. The therapeutic use of HN and related MDPs could potentially prove to be a valuable approach for treatment of AMD.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
YU WANG ◽  
Livia Camargo ◽  
Wendy Beatie ◽  
Martin McBride ◽  
Augusto C Montezano ◽  
...  

Numerous molecular mechanisms have been implicated in processes underlying vascular phenotypic changes and alterations in hypertension, including microRNAs (miRNAs), oxidative stress and perturbed endoplasmic reticulum (ER) function. The interplay between these elements is unclear. We assessed the VSMC miRNAs profile in hypertension focusing on oxidative and ER stress pathways. VSMCs from small arteries from normotensive (NT) and hypertensive (HT) subjects were used. miRNA profiling of 758 miRNAs was performed using TaqMan advanced miRNA assay (TaqMan Low Density Array Human microRNA). Ingenuity Pathway Analysis (IPA) was used for miRNA target prediction. Expression of vascular genes and proteins was detected by RT-PCR and immunoblotting. ROS generation (chemiluminescence) was assessed in the absence and presence of ER stress inducer tunicamycin (5μg/ml, 24h). miRNA array identified 25 miRNAs uniquely expressed in HT and 21 miRNAs uniquely expressed in NT (CT<30). Of the 332 miRNAs present in both groups, 60 miRNAs were significantly upregulated in HT (fold change >1.5), while 136 miRNAs were significantly downregulated in HT (fold change >1.5). miRNAs that were altered in hypertension, targeted genes involved in oxidative and ER stress. Pro-oxidant [Nox1 mRNA (1.71 fold), Nox4 (1.59 fold), Nox5 (2.04 fold)] and antioxidant [SOD2 mRNA (4.43 fold), GPx1 (1.97 fold)] enzymes protein levels upregulated in HT (p<0.05 vs NT). ER stress proteins, such as PERK (1.57 fold) and elF2α (2.31 fold) were also upregulated in HT (p<0.05 vs NT). IPA analysis of our miRNA library, revealed that miR-505-5p (-2.13 fold), miR-324-5p (-1.51 fold), miR-185-5p (-1.742 fold) and miR-491-5p (-1.667 fold) may regulate Nox5 levels. Moreover, miR-200b-3p (-28.57 fold) targets multiple ER stress pathways including elF2α. Treatment with tunicamycin increased ROS generation (2.29 fold) and Nox5 protein expression (1.69 fold) while downregulating SOD2 mRNA (-8.02 fold) in HT (p<0.05 vs NT). Our findings unveil the differentially expressed miRNAs and their predicted redox targets, highlighting potential interplay between VSMC ER stress, oxidative stress and miRNAs in human hypertension.


Author(s):  
Cheol Park ◽  
Da Kwon ◽  
Su Hwang ◽  
Min Han ◽  
Jin-Woo Jeong ◽  
...  

Tacrolimus is widely used as an immunosuppressant to reduce the risk of rejection after organ transplantation, but its cytotoxicity is problematic. Nargenicin A1 is an antibiotic extracted from Nocardia argentinensis and is known to have antioxidant activity, though its mode of action is unknown. The present study was undertaken to evaluate the protective effects of nargenicin A1 on DNA damage and apoptosis induced by tacrolimus in hirame natural embryo (HINAE) cells. We found that reduced HINAE cell survival by tacrolimus was due to the induction of DNA damage and apoptosis, both of which were prevented by co-treating nargenicin A1 or N-acetyl-l-cysteine, a reactive oxygen species (ROS) scavenger, with tacrolimus. In addition, apoptosis induction by tacrolimus was accompanied by increases in ROS generation and decreases in adenosine triphosphate (ATP) levels caused by mitochondrial dysfunction, and these changes were significantly attenuated in the presence of nargenicin A1, which further indicated tacrolimus-induced apoptosis involved an oxidative stress-associated mechanism. Furthermore, nargenicin A1 suppressed tacrolimus-induced B-cell lymphoma-2 (Bcl-2) down-regulation, Bax up-regulation, and caspase-3 activation. Collectively, these results demonstrate that nargenicin A1 protects HINAE cells against tacrolimus-induced DNA damage and apoptosis, at least in part, by scavenging ROS and thus suppressing the mitochondrial-dependent apoptotic pathway.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Amara Maryam ◽  
Tahir Mehmood ◽  
Qiulong Yan ◽  
Yongming Li ◽  
Muhammad Khan ◽  
...  

Cardiac glycosides are natural compounds used for the treatment of cardiovascular disorders. Although originally prescribed for cardiovascular diseases, more recently, they have been rediscovered for their potential use in the treatment of cancer. Proscillaridin A (PSD-A), a cardiac glycoside component of Urginea maritima, has been reported to exhibit anticancer activity. However, the cellular targets and anticancer mechanism of PSD-A in various cancers including lung cancer remain largely unexplored. In the present study, we found that PSD-A inhibits growth and induces apoptosis in A549 lung adenocarcinoma cells. The anticancer activity of PSD-A was found to be associated with the activation of JNK, induction of ER stress, mitochondrial dysfunction, and inhibition of STAT3 activation. PSD-A induces oxidative stress as evidenced from ROS generation, GSH depletion, and decreased activity of TrxR1. PSD-A-mediated ER stress was verified by increased phosphorylation of eIF2α and expression of its downstream effector proteins ATF4, CHOP, and caspases-4. PSD-A triggered apoptosis by inducing JNK (1/2) activation, increasing bax/bcl-2 ratio, dissipating mitochondrial membrane potential, and inducing cleavage of caspases and PARP. Further study revealed that PSD-A inhibits both constitutive and inducible STAT3 activations and decreases STAT3 DNA-binding activity. Moreover, PSD-A-mediated inhibition of STAT3 activation was found to be associated with increased SHP-1 expression, decreased phosphorylation of Src, and binding of PSD-A with STAT3 SH2 domain. Finally, STAT3 knockdown by shRNA inhibited growth and enhanced apoptotic efficacy of PSD-A. Taken together, the data suggest that PSD-A could be developed into a potential therapeutic agent against lung adenocarcinoma.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Li-zhen Qiu ◽  
Lan-xin Yue ◽  
Yu-hao Ni ◽  
Wei Zhou ◽  
Cong-shu Huang ◽  
...  

Cassiae Semen is a widely used herbal medicine and a popular edible variety in many dietary or health beverage. Emerging evidence disclosed that improper administration of Cassiae Semen could induce obvious liver injury, which is possibly attributed to emodin, one of the bioactive anthraquinone compounds in Cassiae Semen, which caused hepatotoxicity, but the underlying mechanisms are not completely understood. Hence, the present study firstly explored the possible role of oxidative stress-mediated mitochondrial dysfunction and ER stress in emodin-cause apoptosis of L02 cells, aiming to elaborate possible toxic mechanisms involved in emodin-induced hepatotoxicity. Our results showed that emodin-induced ROS activated ER stress and the UPR via the BiP/IRE1α/CHOP signaling pathway, followed by ER Ca2+ release and cytoplasmic Ca2+ overloading. At the same time, emodin-caused redox imbalance increased mtROS while decreased MMP and mitochondrial function, resulting in the leaks of mitochondrial-related proapoptotic factors. Interestingly, blocking Ca2+ release from ER by 2-APB could inhibit emodin-induced apoptosis of L02, but the restored mitochondrial function did not reduce the apoptosis rates of emodin-treated cells. Besides, tunicamycin (TM) and doxorubicin (DOX) were used to activate ER stress and mitochondrial injury at a dosage where obvious apoptosis was not observed, respectively. We found that cotreatment with TM and DOX significantly induced apoptosis of L02 cells. Thus, all the results indicated that emodin-induced excessive ROS generation and redox imbalance promoted apoptosis, which was mainly associated with BiP/IRE1α/CHOP signaling-mediated ER stress and would be enhanced by oxidative stress-mediated mitochondrial dysfunction. Altogether, this finding has implicated that redox imbalance-mediated ER stress could be an alternative target for the treatment of Cassiae Semen or other medicine-food homologous varieties containing emodin-induced liver injury.


2012 ◽  
Vol 109 (4) ◽  
pp. 727-735 ◽  
Author(s):  
Xiaoli Huang ◽  
Li Li ◽  
Linyou Zhang ◽  
Zhihong Zhang ◽  
Xiaolin Wang ◽  
...  

α-Tocopheryl succinate (α-TOS) has been shown to be a potent apoptosis inducer and growth inhibitor in a variety of cancer cells. Our previous studies showed the important role of endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) generation in the apoptosis induced by α-TOS. However, the relationship of oxidative stress with ER stress is still controversial. The objective of the present study was to investigate the interplay between the two stress responses induced by α-TOS in SGC-7901 human gastric cancer cells. In response to α-TOS, cytological changes typical of apoptosis, induction of glucose-regulated protein 78 (GRP78) and CCAAT/enhancer-binding protein (C/EBP) homologous protein transcription factor (CHOP), and activation of caspase-4 were observed. And the antioxidant N-acetyl-l-cysteine inhibited induction of both GRP78 and CHOP by α-TOS transcriptionally and translationally. Furthermore, knocking down CHOP by RNA interference decreased ROS generation, increased glutathione level and induced glutathione peroxidase mRNA expression in α-TOS-treated cells, whereas catalase and superoxide dismutases mRNA expression were not altered. The results imply that α-TOS induces ER stress response through ROS production, while CHOP perturbs the redox state of SGC-7901 cells treated with α-TOS.


Sign in / Sign up

Export Citation Format

Share Document