scholarly journals MTCS: A Method of Analyzing the Traffic Capacity of Urban Bus Lane Based on Vissim Simulation

Author(s):  
Hongtao Yuan ◽  
Huizhen Zhang ◽  
Minglei Liu ◽  
Cheng Wang ◽  
Yubiao Pan ◽  
...  

Abstract As an effective method of improving the attractiveness of urban public transport and alleviating urban traffic congestion, bus lanes play an important role in the urban public transport system. The research on the capacity of bus lanes is conducive to improve the operation efficiency of urban bus roads and improve the service level of urban public transport. To obtain the maximum capacity of the bus lane, on one hand, the empirical formula can be used for theoretical calculation, and on the other hand, the simulation model can be established for analysis and verification. Based on the idea of simulation, a method using Vissim is proposed, called MTCS (Minimum Traffic Capacity Substitution Method). The method divides the bus lane into different sections by intersections and stops, establishes simulation model of the bus lane to calculate the traffic capacity of each section such as vehicle speed and flow and select the minimum traffic capacity of the sections as the traffic capacity of the bus lane, which is verified by using the road saturation. The simulation process uses the actual travel speed and traffic flow of the bus lane as evaluation indicators, with the aim of maximizing the road traffic flow while the actual speed of vehicles on the road is close to the desired speed, thus achieving the desired road traffic state. To verify and improve the effectiveness of the method, its analysis results are compared with the empirical formula, and various methods of enhancing traffic capacity are quantitatively simulated. The parameters of the simulation model are set by the actual bus lane example, and the experimental results show that by the methods of modifying the stop-station mode and the signal-lamp cycle, 10% and 14% improvements can be achieved, respectively. This has a good reference value for the construction of bus lanes and the adjustment of road facilities.

2014 ◽  
Vol 926-930 ◽  
pp. 3798-3801
Author(s):  
Zhi Wei Yang

The article is research on the influence of urban lane occupied for the road traffic capacity. Under the condition that the density of urban traffic flow is big, and it‘s successional, we consider the quantity of vehicle is continuous. Through analyzing the dynamic changes of the road traffic capacity and its influencing factors after accidents, we can get reasonable suggestions of reducing the length of traffic jam. First we establish a flow-speed-density model to describe the dynamic changes of the road traffic capacity. Then we can compare the traffic flow to the electric current according to its continuity. So the upstream traffic flow and the traffic capacity of the accident cross section are equal to the charging current and the discharging current. And the vehicle queue is translated to the voltage of the charge-discharge capacitance. We can get the length of the vehicle queue by the formula of the capacitance voltage approximately. Finally the correction coefficient is introduced. In conclusion, the road traffic capacity is depended on the distance from the upstream intersection and the lane that the accident happened on and so on. Meanwhile, if we don’t solve the accident timely, the length will rise sharply. It will cause serious traffic jam. So we suggest relevant departments timely deal with the accident, evacuate the traffic, and prompt drivers to change lanes in advance.


Author(s):  
V.P. Sidorov ◽  
P.Yu. Sitnikov

One of the most important components of the territorial socio-economic complex of a city (especially a large one) is the system of urban passenger transport, which, in turn, consists of two subsystems: urban public transport and personal vehicles. In 2000-2020. many large and medium-sized cities in Russia are going through a period of active motorization. Izhevsk is no exception in this regard. The level of motorization of the population has been increasing in recent years both in the city and in the Udmurt Republic as a whole. There is a growing need to reduce the flow of personal vehicles towards more active use of public transport. Urban public transport (for all its significant scale) has, as a rule, 2-3 owners and therefore is largely manageable, which cannot be said about personal vehicles. It is not possible to force car owners to switch to public transport by order. But it is possible to create such conditions when the resident himself does not use his own car, but gives preference to public transport. For example, to organize the work of a single parking space, in which the placement of paid parking lots will make it unprofitable to visit many of the most attractive objects (especially in the central part of the city) by private vehicle. An example of such relevant work is shown in the proposed article. By order of the Administration of Izhevsk, the authors of the article have identified the most optimal locations for paid car parks. The choice was determined based on the results of step-by-step work to assess: the location of the potential of Izhevsk public transport, the intensity of traffic flows, the density of the population, the availability of existing parking areas, points of attraction for vehicles.


2015 ◽  
Vol 809-810 ◽  
pp. 1073-1078 ◽  
Author(s):  
Cristina Ștefănică ◽  
Vasile Dragu ◽  
Ştefan Burciu ◽  
Anamaria Ilie ◽  
Oana Dinu

Impetuous multiplication of mobility and road traffic proliferation lead to concerns for increasing the attractiveness of urban public transport. Compared to private car use, urban public transport attractiveness is conditioned, in particular, by travel times and certainty of respecting the transport schedules, meaning planned traffic stability. Traffic schedules are considered to be more stable as the primary delays from the announced schedule have low probabilities and values and their propagation as repeated delays is least noticed in time and space. Solutions for assuring traffic stability must take into consideration contradictory aspects, because introducing time reserves in the schedules means time travel extensions. In order to assure the stability of planned traffic, present paper develops studies of various models and methods that aim to reduce inherent primary delays. Thereby, for studying repeated delays on a complex network, a mathematical model adequate to a Discrete Event Dynamic System (DEDS), that in MAX-PLUS algebra becomes a linear system, was used. The paper concludes with a case study on an integrated network resulted from the superposition of Bucharest’s existing suburban rail network with the underground network designed for 2030, being identified measures for improving the stability indicators. Traffic stability is assessed on the basis of two indicators: instability coefficient and delay elimination rate. Main measure for improving stability indicators is the growth of time reserves taking into consideration the quality requirements resulting from the condition of maintaining a reduced planned travel time.


Author(s):  
Ziyuan Wang ◽  
Lars Kulik ◽  
Kotagiri Ramamohanarao

Congestion is a major challenge in today’s road traffic. The primary cause is bottlenecks such as ramps leading onto highways, or lane blockage due to obstacles. In these situations, the road capacity reduces because several traffic streams merge to fewer streams. Another important factor is the non-coordinated driving behavior resulting from the lack of information or the intention to minimize the travel time of a single car. This chapter surveys traffic control strategies for optimizing traffic flow on highways, with a focus on more adaptive and flexible strategies facilitated by current advancements in sensor-enabled cars and vehicular ad hoc networks (VANETs). The authors investigate proactive merging strategies assuming that sensor-enabled cars can detect the distance to neighboring cars and communicate their velocity and acceleration among each other. Proactive merging strategies can significantly improve traffic flow by increasing it up to 100% and reduce the overall travel delay by 30%.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1765 ◽  
Author(s):  
Vladimir Shepelev ◽  
Sergei Aliukov ◽  
Kseniya Nikolskaya ◽  
Salavat Shabiev

The possibilities of collecting the necessary information using multi-touch cameras and ways to improve road traffic data collection are considered. An increase in the number of vehicles leads to traffic jams, which in turn leads to an increase in travel time, additional fuel consumption and other negative consequences. To solve this problem, it is necessary to have a reliable information collection system and apply modern effective methods of processing the collected information. The technology considered in the article allows taking into account pedestrians crossing the intersection. The purpose of this article is to determine the most important traffic characteristics that affect the traffic capacity of the intersection, in other words, the actual number of passing cars. Throughput is taken as a dependent variable. Based on the results of the regression analysis, a model was developed to predict the intersection throughput taking into account the most important traffic characteristics. Besides, this model is based on the fuzzy logic method and using the Fuzzy TECH 5.81d Professional Edition computer program.


2017 ◽  
Vol 29 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Anamarija L. Mrgole ◽  
Drago Sever

The main purpose of this study was to investigate the use of various chaotic pattern recognition methods for traffic flow prediction. Traffic flow is a variable, dynamic and complex system, which is non-linear and unpredictable. The emergence of traffic flow congestion in road traffic is estimated when the traffic load on a specific section of the road in a specific time period is close to exceeding the capacity of the road infrastructure. Under certain conditions, it can be seen in concentrating chaotic traffic flow patterns. The literature review of traffic flow theory and its connection with chaotic features implies that this kind of method has great theoretical and practical value. Researched methods of identifying chaos in traffic flow have shown certain restrictions in their techniques but have suggested guidelines for improving the identification of chaotic parameters in traffic flow. The proposed new method of forecasting congestion in traffic flow uses Wigner-Ville frequency distribution. This method enables the display of a chaotic attractor without the use of reconstruction phase space.


2014 ◽  
Vol 1044-1045 ◽  
pp. 1538-1540 ◽  
Author(s):  
Yi Lin Fan ◽  
Bei Chen Cheng ◽  
Li Li Cao ◽  
Kun Cheng Huang

In this paper, we study the impact of city driveway occupancy on the urban road traffic capacity. Through the analysis of the scene of an accident case, we gained the vehicle statistics within a cross section in unit time and then did calculation and simulation. The work is concluded as a reasonable model of vehicle queue relationship evaluation.First, on the base of the definition of traffic capacity, statistics of the cars in the cross section before the accident, during the accident and after the accident have been respectively acquired in unit time (1 min). Then we employ Matlab to do the interpolation fitting, drawing the change of actual capacity of the road from the beginning time of an accident to the time when traffic resumes. The work comes to a conclusion that the change of the capacity at the cross section has a pattern of periodic fluctuation.


2013 ◽  
Vol 779-780 ◽  
pp. 796-799
Author(s):  
Liang Wang ◽  
Yu Jie Wang ◽  
Ling Yu Wang

The urban expressway overpass entrance is an important node of the urban road system. Traffic jams often happen at entrance. The characteristics of urban expressway entrance and the advantages of the microscopic traffic simulation were combined to analyze capacity of entrance. VISSIM simulation software was used and the validity of the simulation model was verified. The influence of the main road traffic flow and the desired speed of entrance to flow and speed of the urban expressway entrance were analyzed through simulation experiment. On the whole, traffic capacity of urban expressway entrance reduces with the increase of traffic flow on the main road. The higher the desired speed is, the faster traffic capacity reduces. The increase of speed and control of main road traffic flow is of great significance for improving the capacity and service level of expressway.


Author(s):  
O K Golovnin

The article describes the road, institutional and weather conditions that affect the traffic flow. I proposed a method for traffic flow profiling using a data-driven approach. The method operates with macroscopic traffic flow characteristics and detailed data of road conditions. The article presents the results of traffic flow speed and intensity profiling taking into account weather conditions. The study used road traffic and conditions data for the city of Aarhus, Denmark. The results showed that the method is effective for traffic flow forecasting due to varying road conditions.


2019 ◽  
Vol 2019 (9) ◽  
pp. 29-38
Author(s):  
Nina Kozaczka ◽  
Stanisław Gaca

The article evaluates the impact of autonomous vehicles on road infrastructure de- sign, road traffic conditions and safety based on a review of existing literature. Levels of driv- ing automation and equipment of self-driving vehicles were presented. Attention was drawn to the benefits of developing communication systems between vehicle and the environment. The possible negative impact of autonomous vehicles on mixed traffic capacity was noted. The potential needs to adapt the road infrastructure to the traffic flow of automated vehicles were also presented. Separation of the lane, dedicated to self-driving vehicles, with a high share of these vehicles was presented as an element that improves the flow of traffic and safe- ty. Keywords: Autonomous vehicles; Road infrastructure; Self-driving cars


Sign in / Sign up

Export Citation Format

Share Document