scholarly journals Engineering for an HPV 9-valent Vaccine using Genomic Constitutive Over-expression and Low Lipopolysaccharide Levels in Escherichia Coli Cells

Author(s):  
Kaihang Wang ◽  
Lizhi Zhou ◽  
Tingting Chen ◽  
Qiong Li ◽  
Jiajia Li ◽  
...  

Abstract BackgroundThe various advantages associated with the growth properties of Escherichia coli have justified their use in the production of genetically engineered vaccines. However, endotoxin contamination, plasmid vector instability, and the requirement for antibiotic supplementation are frequent bottlenecks in the successful production of recombinant proteins that are safe for industrial-scaled applications. To overcome these drawbacks, we focused on interrupting the expression of several key genes involved in the synthesis of lipopolysaccharide (LPS), an endotoxin frequently responsible for toxicity in recombinant proteins, to eliminate endotoxin contamination and produce better recombinant proteins with E. coli.ResultsOf 8 potential target genes associated with LPS synthesis, we successfully constructed 7 LPS biosynthesis-defective recombinant strains to reduce the production of LPS. The endotoxin residue in the protein products from these modified E. coli strains were about two orders of magnitude lower than that produced by the wild-type strain. Further, we found that 6 loci—lpxM, lpxP, lpxL, eptA, gutQ and kdsD­—were suitable for chromosomal integrated expression of HPV L1 protein. We found that a single copy of the expression cassette conferred stable expression during long-term antibiotic-free cultivation as compared with the more variable protein production from plasmid-based expression. In large-scale fermentation, we found that recombinant strains bearing 3 to 5 copies of the expression cassette had 1.5- to 2-fold higher overall expression along with lower endotoxin levels as compared with the parental ER2566 strain. Finally, we engineered and constructed 9 recombinant E. coli strains for the later production of an HPV 9-valent capsid protein with desirable purity, VLP morphology, and antigenicity. ConclusionReengineering the LPS synthesis loci in the E. coli ER2566 strain through chromosomal integration of expression cassettes has potential uses for the production of a 9-valent HPV vaccine candidate, with markedly reduced residual endotoxin levels. Our results offer a new strategy for recombinant E. coli strain construction, engineering, and the development of suitable recombinant protein drugs.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Kaihang Wang ◽  
Lizhi Zhou ◽  
Tingting Chen ◽  
Qiong Li ◽  
Jiajia Li ◽  
...  

Abstract Background The various advantages associated with the growth properties of Escherichia coli have justified their use in the production of genetically engineered vaccines. However, endotoxin contamination, plasmid vector instability, and the requirement for antibiotic supplementation are frequent bottlenecks in the successful production of recombinant proteins that are safe for industrial-scaled applications. To overcome these drawbacks, we focused on interrupting the expression of several key genes involved in the synthesis of lipopolysaccharide (LPS), an endotoxin frequently responsible for toxicity in recombinant proteins, to eliminate endotoxin contamination and produce better recombinant proteins with E. coli. Results Of 8 potential target genes associated with LPS synthesis, we successfully constructed 7 LPS biosynthesis-defective recombinant strains to reduce the production of LPS. The endotoxin residue in the protein products from these modified E. coli strains were about two orders of magnitude lower than that produced by the wild-type strain. Further, we found that 6 loci—lpxM, lpxP, lpxL, eptA, gutQ and kdsD—were suitable for chromosomal integrated expression of HPV L1 protein. We found that a single copy of the expression cassette conferred stable expression during long-term antibiotic-free cultivation as compared with the more variable protein production from plasmid-based expression. In large-scale fermentation, we found that recombinant strains bearing 3 to 5 copies of the expression cassette had 1.5- to 2-fold higher overall expression along with lower endotoxin levels as compared with the parental ER2566 strain. Finally, we engineered and constructed 9 recombinant E. coli strains for the later production of an HPV 9-valent capsid protein with desirable purity, VLP morphology, and antigenicity. Conclusions Reengineering the LPS synthesis loci in the E. coli ER2566 strain through chromosomal integration of expression cassettes has potential uses for the production of a 9-valent HPV vaccine candidate, with markedly reduced residual endotoxin levels. Our results offer a new strategy for recombinant E. coli strain construction, engineering, and the development of suitable recombinant protein drugs.


2020 ◽  
Vol 14 (2) ◽  
pp. 121-133 ◽  
Author(s):  
Maryam Ahankoub ◽  
Gashtasb Mardani ◽  
Payam Ghasemi-Dehkordi ◽  
Ameneh Mehri-Ghahfarrokhi ◽  
Abbas Doosti ◽  
...  

Background: Genetically engineered microorganisms (GEMs) can be used for bioremediation of the biological pollutants into nonhazardous or less-hazardous substances, at lower cost. Polycyclic aromatic hydrocarbons (PAHs) are one of these contaminants that associated with a risk of human cancer development. Genetically engineered E. coli that encoded catechol 2,3- dioxygenase (C230) was created and investigated its ability to biodecomposition of phenanthrene and pyrene in spiked soil using high-performance liquid chromatography (HPLC) measurement. We revised patents documents relating to the use of GEMs for bioremediation. This approach have already been done in others studies although using other genes codifying for same catechol degradation approach. Objective: In this study, we investigated biodecomposition of phenanthrene and pyrene by a genetically engineered Escherichia coli. Methods: Briefly, following the cloning of C230 gene (nahH) into pUC18 vector and transformation into E. coli Top10F, the complementary tests, including catalase, oxidase and PCR were used as on isolated bacteria from spiked soil. Results: The results of HPLC measurement showed that in spiked soil containing engineered E. coli, biodegradation of phenanthrene and pyrene comparing to autoclaved soil that inoculated by wild type of E. coli and normal soil group with natural microbial flora, were statistically significant (p<0.05). Moreover, catalase test was positive while the oxidase tests were negative. Conclusion: These findings indicated that genetically manipulated E. coli can provide an effective clean-up process on PAH compounds and it is useful for bioremediation of environmental pollution with petrochemical products.


2021 ◽  
Vol 9 (2) ◽  
pp. 310
Author(s):  
Masayuki Hashimoto ◽  
Yi-Fen Ma ◽  
Sin-Tian Wang ◽  
Chang-Shi Chen ◽  
Ching-Hao Teng

Uropathogenic Escherichia coli (UPEC) is a major bacterial pathogen that causes urinary tract infections (UTIs). The mouse is an available UTI model for studying the pathogenicity; however, Caenorhabditis elegans represents as an alternative surrogate host with the capacity for high-throughput analysis. Then, we established a simple assay for a UPEC infection model with C. elegans for large-scale screening. A total of 133 clinically isolated E. coli strains, which included UTI-associated and fecal isolates, were applied to demonstrate the simple pathogenicity assay. From the screening, several virulence factors (VFs) involved with iron acquisition (chuA, fyuA, and irp2) were significantly associated with high pathogenicity. We then evaluated whether the VFs in UPEC were involved in the pathogenicity. Mutants of E. coli UTI89 with defective iron acquisition systems were applied to a solid killing assay with C. elegans. As a result, the survival rate of C. elegans fed with the mutants significantly increased compared to when fed with the parent strain. The results demonstrated, the simple assay with C. elegans was useful as a UPEC infectious model. To our knowledge, this is the first report of the involvement of iron acquisition in the pathogenicity of UPEC in a C. elegans model.


1985 ◽  
Vol 95 (3) ◽  
pp. 611-618
Author(s):  
Naomi Datta

SUMMARYThe study of Escherichia coli and its plasmids and bacteriophages has provided a vast body of genetical information, much of it relevant to the whole of biology. This was true even before the development of the new techniques, for cloning and analysing DNA, that have revolutionized biological research during the past decade. Thousands of millions of dollars are now invested in industrial uses of these techniques, which all depend on discoveries made in the course of academic research on E. coli. Much of the background of knowledge necessary for the cloning and expression of genetically engineered information, as well as the techniques themselves, came from work with this organism.


2016 ◽  
Vol 79 (1) ◽  
pp. 66-74 ◽  
Author(s):  
P. B. SHRIDHAR ◽  
L. W. NOLL ◽  
X. SHI ◽  
B. AN ◽  
N. CERNICCHIARO ◽  
...  

ABSTRACT Shiga toxin–producing Escherichia coli (STEC) serogroups O26, O45, O103, O111, O121, and O145, called non-O157 STEC, are important foodborne pathogens. Cattle, a major reservoir, harbor the organisms in the hindgut and shed them in the feces. Although limited data exist on fecal shedding, concentrations of non-O157 STEC in feces have not been reported. The objectives of our study were (i) to develop and validate two multiplex quantitative PCR (mqPCR) assays, targeting O-antigen genes of O26, O103, and O111 (mqPCR-1) and O45, O121, and O145 (mqPCR-2); (ii) to utilize the two assays, together with a previously developed four-plex qPCR assay (mqPCR-3) targeting the O157 antigen and three virulence genes (stx1, stx2, and eae), to quantify seven serogroups and three virulence genes in cattle feces; and (iii) to compare the three mqPCR assays to a 10-plex conventional PCR (cPCR) targeting seven serogroups and three virulence genes and culture methods to detect seven E. coli serogroups in cattle feces. The two mqPCR assays (1 and 2) were shown to be specific to the target genes, and the detection limits were 4 and 2 log CFU/g of pure culture–spiked fecal samples, before and after enrichment, respectively. A total of 576 fecal samples collected from a feedlot were enriched in E. coli broth and were subjected to quantification (before enrichment) and detection (after enrichment). Of the 576 fecal samples subjected, before enrichment, to three mqPCR assays for quantification, 175 (30.4%) were quantifiable (≥4 log CFU/g) for at least one of the seven serogroups, with O157 being the most common serogroup. The three mqPCR assays detected higher proportions of postenriched fecal samples (P &lt; 0.01) as positive for one or more serogroups compared with cPCR and culture methods. This is the first study to assess the applicability of qPCR assays to detect and quantify six non-O157 serogroups in cattle feces and to generate data on fecal concentration of the six serogroups.


2007 ◽  
Vol 85 (2) ◽  
pp. 203-208 ◽  
Author(s):  
Hongmei Dong ◽  
Xiaohu Xu ◽  
Mohong Deng ◽  
Xiaojun Yu ◽  
Hu Zhao ◽  
...  

The aim of the study was to prepare an active recombinant human perforin by comparing 5 candidate segments of human perforin. Full-length perforin, MAC1 (28–349 aa), MAC2 (166–369 aa), C-100, and N-60 of human perforin were selected as candidate active segments and designated, respectively, HP1, HP2, HP3, HP4, and HP5. The target genes were amplified by PCR and the products were individually subcloned into pGEM-T. The genes for HP1, HP2, HP3, and HP5 were subcloned into pET-DsbA, whereas pET-41a (+) was used as the expression vector of HP4. The fusion proteins were expressed in Escherichia coli BL21pLysS(DE3) and purified using nickel nitrilotriacetic acid (NTA) agarose affinity chromatography. The hemolysis microassay was used as an activity assay of fusion protein. From this study, we obtained the recombinant plasmids pGEM-T-HP1, -HP2, -HP3, -HP4 and -HP5, consisting of 1600, 960, 600, 300bp, and 180, respectively. From these recombinant plasmids, expression plasmids were successfully constructed and expressed in E. coli BL21pLysS(DE3). The resultant fusion proteins, affinity purified using Ni–NTA, were ~80, 58, 45, 44, and 30 kDa, respectively. The recombinant proteins were assayed for activity on hemolysis. HP2 and HP5 were the only recombinant proteins that were active in hemolysis, and the hemolytic function was concentration dependent. These results demonstrate that active recombinant forms of perforin can be synthesized in a prokaryote model. The recombinant N-60 and MAC1 (28–349 aa) of human perforin have the function of forming pores. Our study provides the experimental basis for further investigation on the application of perforin.


2019 ◽  
Author(s):  
Elizabeth Muligisa Muonga ◽  
Geoffrey Mainda ◽  
Mercy Mukuma ◽  
Geoffrey Kwenda ◽  
Bernard Hang'ombe ◽  
...  

Abstract Background Antimicrobial resistance (AMR) of foodborne pathogens is of public health concern, especially in developing countries like Zambia. This study was undertaken to determine the resistance profiles of Escherichia coli ( E. coli ) and Salmonella isolated from dressed broiler chickens purchased from open markets and supermarkets in Zambia.Results A total of 189 E. coli and five Salmonella isolates were isolated. Identification and confirmation of the isolates was done using Analytical Profile Index (API 20E) (Biomerieux ® ) and 16S rRNA sequencing. Antimicrobial susceptibility tests (AST) were performed using the Kirby Bauer disk diffusion technique using a panel of 10 different antibiotics and multiplex PCR was used to determine the presence of three target genes encoding for resistance: tetA, Sul1 and CTXM. AST results were entered and analyzed in WHONET 2018 software. A total of 189 E. coli and five Salmonella isolates were identified. Among the E. coli isolates, Tetracycline recorded the highest resistance of 79.4%, followed by Ampicillin 51.9%, Trimethoprim/Sulfamethoxazole 49.7%, Nalidixic Acid 24.3%, Chloramphenicol 16.4%, Cefotaxime 16.4%, Ciprofloxacin 10.1%, Colistin 7.4%, Amoxicillin/Clavulanic acid 6.9%, and Imipenem 1.1%. Two of the five Salmonella isolates were resistant to at least one antibiotic. Forty- seven (45.2%) of the isolates possessed at least one of the targeted resistance genes.Conclusion This study has demonstrated the presence of AMR E. coli and Salmonella on raw broiler chickens from both open markets and supermarkets. Such resistance is of public health concern and measures need to be put in place to regulate the use of these antimicrobials in poultry production.


mSystems ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Kumari Sonal Choudhary ◽  
Julia A. Kleinmanns ◽  
Katherine Decker ◽  
Anand V. Sastry ◽  
Ye Gao ◽  
...  

ABSTRACT Escherichia coli uses two-component systems (TCSs) to respond to environmental signals. TCSs affect gene expression and are parts of E. coli’s global transcriptional regulatory network (TRN). Here, we identified the regulons of five TCSs in E. coli MG1655: BaeSR and CpxAR, which were stimulated by ethanol stress; KdpDE and PhoRB, induced by limiting potassium and phosphate, respectively; and ZraSR, stimulated by zinc. We analyzed RNA-seq data using independent component analysis (ICA). ChIP-exo data were used to validate condition-specific target gene binding sites. Based on these data, we do the following: (i) identify the target genes for each TCS; (ii) show how the target genes are transcribed in response to stimulus; and (iii) reveal novel relationships between TCSs, which indicate noncognate inducers for various response regulators, such as BaeR to iron starvation, CpxR to phosphate limitation, and PhoB and ZraR to cell envelope stress. Our understanding of the TRN in E. coli is thus notably expanded. IMPORTANCE E. coli is a common commensal microbe found in the human gut microenvironment; however, some strains cause diseases like diarrhea, urinary tract infections, and meningitis. E. coli’s two-component systems (TCSs) modulate target gene expression, especially related to virulence, pathogenesis, and antimicrobial peptides, in response to environmental stimuli. Thus, it is of utmost importance to understand the transcriptional regulation of TCSs to infer bacterial environmental adaptation and disease pathogenicity. Utilizing a combinatorial approach integrating RNA sequencing (RNA-seq), independent component analysis, chromatin immunoprecipitation coupled with exonuclease treatment (ChIP-exo), and data mining, we suggest five different modes of TCS transcriptional regulation. Our data further highlight noncognate inducers of TCSs, which emphasizes the cross-regulatory nature of TCSs in E. coli and suggests that TCSs may have a role beyond their cognate functionalities. In summary, these results can lead to an understanding of the metabolic capabilities of bacteria and correctly predict complex phenotype under diverse conditions, especially when further incorporated with genome-scale metabolic models.


2019 ◽  
Vol 366 (24) ◽  
Author(s):  
Yan Ge ◽  
Senlin Guo ◽  
Tao Liu ◽  
Chen Zhao ◽  
Duanhua Li ◽  
...  

ABSTRACT A nuclease from Yersinia enterocolitica subsp. palearctica (Nucyep) is a newly found thermostable nonspecific nuclease. The heat-resisting ability of this nuclease would be extremely useful in biological research or pharmaceutical production. However, the application of this nuclease is limited because of its poor yield. This research aimed to improve Nucyep productivity by producing a novel genetically engineered Escherichia coli and optimizing the production procedures. After 4 h of induction by lactose, the new genetically engineered E. coli can express a substantial amount of Nucyep in the form of inclusion bodies. The yield was approximately 0.3 g of inclusion bodies in 1 g of bacterial pellets. The inclusion bodies were extracted by sonication and solubilized in an 8 M urea buffer. Protein renaturation was successfully achieved by dilution method. Pure enzyme was obtained after subjecting the protein solution to anion exchange. The Nucyep showed its nonspecific and heat resistant properties as previously reported (Boissinot et  al. 2016). Through a quantification method, its activity was determined to be 1.3 × 10 6 Kunitz units (K.U.)/mg. These results can serve as a reference for increasing Nucyep production.


2009 ◽  
Vol 72 (7) ◽  
pp. 1513-1520 ◽  
Author(s):  
MANAN SHARMA ◽  
DAVID T. INGRAM ◽  
JITENDRA R. PATEL ◽  
PATRICIA D. MILLNER ◽  
XIAOLIN WANG ◽  
...  

Internalization of Escherichia coli O157:H7 into spinach plants through root uptake is a potential route of contamination. ATn7-based plasmid vector was used to insert a green fluorescent protein gene into the attTn7 site in the E. coli chromosome. Three green fluorescent protein–labeled E. coli inocula were used: produce outbreak O157:H7 strains RM4407 and RM5279 (inoculum 1), ground beef outbreak O157:H7 strain 86-24h11 (inoculum 2), and commensal strain HS (inoculum 3). These strains were cultivated in fecal slurries and applied at ca. 103 or 107 CFU/g to pasteurized soils in which baby spinach seedlings were planted. No E. coli was recovered by spiral plating from surface-sanitized internal tissues of spinach plants on days 0, 7, 14, 21, and 28. Inoculum 1 survived at significantly higher populations (P &lt; 0.05) in the soil than did inoculum 3 after 14, 21, and 28 days, indicating that produce outbreak strains of E. coli O157:H7 may be less physiologically stressed in soils than are nonpathogenic E. coli isolates. Inoculum 2 applied at ca. 107 CFU/ml to hydroponic medium was consistently recovered by spiral plating from the shoot tissues of spinach plants after 14 days (3.73 log CFU per shoot) and 21 days (4.35 log CFU per shoot). Fluorescent E. coli cells were microscopically observed in root tissues in 23 (21%) of 108 spinach plants grown in inoculated soils. No internalized E. coli was microscopically observed in shoot tissue of plants grown in inoculated soil. These studies do not provide evidence for efficient uptake of E. coli O157:H7 from soil to internal plant tissue.


Sign in / Sign up

Export Citation Format

Share Document