scholarly journals The present conception of neonatal microbiome formation

2021 ◽  
Vol 9 (1) ◽  
pp. 18-28
Author(s):  
S.V. Popov ◽  
O.I. Smiian ◽  
A.O. Profatylo

The neonatal period is critical in the development of the microbiome and the gastrointestinal tract. That is, the microbiome regulates not only the processes that are associated with the basic functions of the gastrointestinal tract, but is associated with the content of vitamins and micronutrients, affects the development of the nervous and endocrine systems of newborns. Fortunately, microbiome and immunity of pregnant get ready the infant for his inevitable complications. Although preterm birth has been connected with bacterial colonization of the amniotic cavity for many years, the dogma of a sterile intrauterine environment during a normal pregnancy has appeared only recently. Numerous placental microbiome and the occurrence of microorganisms in the amniotic cavity in normal pregnancy was demonstrated by metagenomic sequencing. The occurrence of microorganisms in intestine got from the operating room during resection of intestinal abnormalities immediately after birth and before feeding was also found in neonates born by caesarean section. In this literature review, we explore the update understanding of microbial colonization of the intestine and foundation of function of the gastrointestinal tract. We discuss how mother’s genital and extragenital pathologies, her diet, lifestyle, taking drugs during pregnancy form the microbiome of the fetus and its further development in the neonatal period. Also, equally important for the establishment of the neonatal microbiome are gestational age, mode of delivery, type of feeding and medication, including antibiotics. Therefore, in our opinion, the comparison of microbiota of a full-term newborn in vaginal birth and an infant born prematurely or by cesarean section is clinically significant for physicians in various fields. The study of changes in the microbial composition of the intestine is an important step in the diagnosis of pathological conditions in this period.

Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 1030
Author(s):  
Ingeborg Klymiuk ◽  
Georg Singer ◽  
Christoph Castellani ◽  
Slave Trajanoski ◽  
Beate Obermüller ◽  
...  

Environmental factors, including nutritional habits or birth mode, are known key determinants for intestinal microbial composition. Investigations of the intestinal microbiome in different species in a multiplicity of studies during recent decades have revealed differential microbial patterns and quantities along the gastrointestinal (GI) tract. Characterization of the microbial pattern in various aspects is a prerequisite for nutritional interventions. In this 16S rRNA amplicon-based approach, we present a characterization of the mucosa-associated microbiome in comparison with the luminal community of four infants at the time of the closure of ileostomies and perform a systematic characterization of the corresponding luminal and mucosal microbiome from jejunal, ileal and colonic regions, as well as collected feces in mice. The most dominant taxa in infant-derived samples altered due to individual differences, and in the mucosa, Enterococcus, Clostridiumsensustricto1, Veillonella, Streptococcus and Staphylococcus were the most abundant. Two less abundant taxa differed significantly between the mucosa and lumen. In murine samples, relative abundances differed significantly, mainly between the intestinal regions. Significant differences between mouse mucosa- and lumen-derived samples could be found in the observed species with a trend to lower estimated diversity in mucosa-derived samples, as well as in the relative abundance of individual taxa. In this study, we examined the difference between the mucosal and luminal bacterial colonization of the gastrointestinal tract in a small sample cohort of preterm infants. Individual differences were characterized and statistical significance was reached in two taxa (Cupriavidus, Ralstonia). The corresponding study on the different murine intestinal regions along the GI tract showed differences all over the intestinal region.


2019 ◽  
Vol 97 (9) ◽  
pp. 3741-3757 ◽  
Author(s):  
Nirosh D Aluthge ◽  
Dana M Van Sambeek ◽  
Erin E Carney-Hinkle ◽  
Yanshuo S Li ◽  
Samodha C Fernando ◽  
...  

Abstract A variety of microorganisms inhabit the gastrointestinal tract of animals including bacteria, archaea, fungi, protozoa, and viruses. Pioneers in gut microbiology have stressed the critical importance of diet:microbe interactions and how these interactions may contribute to health status. As scientists have overcome the limitations of culture-based microbiology, the importance of these interactions has become more clear even to the extent that the gut microbiota has emerged as an important immunologic and metabolic organ. Recent advances in metagenomics and metabolomics have helped scientists to demonstrate that interactions among the diet, the gut microbiota, and the host to have profound effects on animal health and disease. However, although scientists have now accumulated a great deal of data with respect to what organisms comprise the gastrointestinal landscape, there is a need to look more closely at causative effects of the microbiome. The objective of this review is intended to provide: 1) a review of what is currently known with respect to the dynamics of microbial colonization of the porcine gastrointestinal tract; 2) a review of the impact of nutrient:microbe effects on growth and health; 3) examples of the therapeutic potential of prebiotics, probiotics, and synbiotics; and 4) a discussion about what the future holds with respect to microbiome research opportunities and challenges. Taken together, by considering what is currently known in the four aforementioned areas, our overarching goal is to set the stage for narrowing the path towards discovering how the porcine gut microbiota (individually and collectively) may affect specific host phenotypes.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 584
Author(s):  
Natalia Nunez ◽  
Louis Réot ◽  
Elisabeth Menu

Interactions between the immune system and the microbiome play a crucial role on the human health. These interactions start in the prenatal period and are critical for the maturation of the immune system in newborns and infants. Several factors influence the composition of the infant’s microbiota and subsequently the development of the immune system. They include maternal infection, antibiotic treatment, environmental exposure, mode of delivery, breastfeeding, and food introduction. In this review, we focus on the ontogeny of the immune system and its association to microbial colonization from conception to food diversification. In this context, we give an overview of the mother–fetus interactions during pregnancy, the impact of the time of birth and the mode of delivery, the neonate gastrointestinal colonization and the role of breastfeeding, weaning, and food diversification. We further review the impact of the vaccination on the infant’s microbiota and the reciprocal case. Finally, we discuss several potential therapeutic interventions that might help to improve the newborn and infant’s health and their responses to vaccination. Throughout the review, we underline the main scientific questions that are left to be answered and how the non-human primate model could help enlighten the path.


2002 ◽  
Vol 81 (4) ◽  
pp. 585-589 ◽  
Author(s):  
A. Farhat ◽  
C.W. Maddox ◽  
M.E. Edwards ◽  
M.H. Costell ◽  
J.A. Hadley ◽  
...  

2022 ◽  
Vol 8 ◽  
Author(s):  
Weilan Wang ◽  
Jodi E. Nettleton ◽  
Michael G. Gänzle ◽  
Raylene A. Reimer

To identify possible mechanisms by which maternal consumption of non-nutritive sweeteners increases obesity risk in offspring, we reconstructed the major alterations in the cecal microbiome of 3-week-old offspring of obese dams consuming high fat/sucrose (HFS) diet with or without aspartame (5–7 mg/kg/day) or stevia (2–3 mg/kg/day) by shotgun metagenomic sequencing (n = 36). High throughput 16S rRNA gene sequencing (n = 105) was performed for dams, 3- and 18-week-old offspring. Maternal consumption of sweeteners altered cecal microbial composition and metabolism of propionate/lactate in their offspring. Offspring daily body weight gain, liver weight and body fat were positively correlated to the relative abundance of key microbes and enzymes involved in succinate/propionate production while negatively correlated to that of lactose degradation and lactate production. The altered propionate/lactate production in the cecum of weanlings from aspartame and stevia consuming dams implicates an altered ratio of dietary carbohydrate digestion, mainly lactose, in the small intestine vs. microbial fermentation in the large intestine. The reconstructed microbiome alterations could explain increased offspring body weight and body fat. This study demonstrates that intense sweet tastants have a lasting and intergenerational effect on gut microbiota, microbial metabolites and host health.


2020 ◽  
Vol 71 (0) ◽  
pp. 7-13
Author(s):  
Shohei Akagawa ◽  
Yuko Akagawa ◽  
Shoji Tsuji ◽  
Kazunari Kaneko

2020 ◽  
Author(s):  
Alena Moudra ◽  
Veronika Niederlova ◽  
Jiri Novotny ◽  
Lucie Schmiedova ◽  
Jan Kubovciak ◽  
...  

AbstractAntigen-inexperienced memory-like T (AIMT) cells are functionally unique T cells representing one of the two largest subsets of murine CD8+ T cells. However, differences between laboratory inbred strains, insufficient data from germ-free mice, a complete lack of data from feral mice, and unclear relationship between AIMT cells formation during aging represent major barriers for better understanding of their biology. We performed a thorough characterization of AIMT cells from mice of different genetic background, age, and hygienic status by flow cytometry and multi-omics approaches including analyses of gene expression, TCR repertoire, and microbial colonization. Our data showed that AIMT cells are steadily present in mice independently of their genetic background and hygienic status. Despite differences in their gene expression profiles, young and aged AIMT cells originate from identical clones. We identified that CD122 discriminates two major subsets of AIMT cells in a strain-independent manner. Whereas thymic CD122LOW AIMT cells (innate memory) prevail only in young animals with high thymic IL-4 production, peripheral CD122HIGH AIMT cells (virtual memory) dominate in aged mice. Co-housing with feral mice changed the bacterial colonization of laboratory strains, but had only minimal effects on the CD8+ T-cell compartment including AIMT cells.


2022 ◽  
Vol 11 (2) ◽  
pp. 327
Author(s):  
Yeong-Nan Cheng ◽  
Wei-Chih Huang ◽  
Chen-Yu Wang ◽  
Pin-Kuei Fu

Lower respiratory tract sampling from endotracheal aspirate (EA) and bronchoalveolar lavage (BAL) are both common methods to identify pathogens in severe pneumonia. However, the difference between these two methods in microbiota profiles remains unclear. We compared the microbiota profiles of pairwise EA and BAL samples in ICU patients with respiratory failure due to severe pneumonia. We prospectively enrolled 50 ICU patients with new onset of pneumonia requiring mechanical ventilation. EA and BAL were performed on the first ICU day, and samples were analyzed for microbial community composition via 16S rRNA metagenomic sequencing. Pathogens were identified in culture medium from BAL samples in 21 (42%) out of 50 patients. No difference was observed in the antibiotic prescription pattern, ICU mortality, or hospital mortality between BAL-positive and BAL-negative patients. The microbiota profiles in the EA and BAL samples are similar with respect to diversity, microbial composition, and microbial community correlations. The antibiotic treatment regimen was rarely changed based on the BAL findings. The samples from BAL did not provide more information than EA in the microbiota profiles. We suggest that EA is more useful than BAL for microbiome identification in mechanically ventilated patients.


Author(s):  
Khushboo Singh ◽  
Alka Goel ◽  
Anupriya Narain

Background: In normal pregnancy, variable amount of weight gain is a constant phenomenon. The study aims to find an association between gestational weight gain and fetomaternal outcome. GWG (using institute of medicines guidelines meant for US population) and pregnancy outcomes among Asian Indians across different BMI categories (according to WHO Asia Pacific BMI cut points) were studied.Methods: 300 women were split into the three groups based on their gestational weight gain. Namely, below recommended GWG, recommended GWG and above recommended GWG group. Comparison of various fetomaternal outcomes was done between these groups.Results: In women, who had higher than recommended GWG, 30.5% developed GDM, 23.2% had gestational hypertensive disorder, 36.6% developed hypothyroidism, 12.2% had pre-term birth and 15.9% had low birth weight. In recommended GWG category, these were 5.4%, 4.5%, 30.6%, 7.2% and 17.1% respectively; and in below recommended category, these were 14%, 1.9%, 22.4%,12.1% and 24.3% respectively.Conclusions: GWG generally follows the BMI pattern at the time of entering into pregnancy, higher the BMI more the GWG. More GWG was associated with GDM, Gestational hypertensive disorders and poor APGAR at birth. Below recommended GWG was associated with higher occurrence of GDM. No statistical correlation, between GWG and mode of delivery, NICU stay, preterm birth and birth weight was observed. Larger study is required to establish the applicability of IOM Guidelines for GWG on Indian women.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Kory J Dees ◽  
Hyunmin Koo ◽  
J Fraser Humphreys ◽  
Joseph A Hakim ◽  
David K Crossman ◽  
...  

Abstract Background Although immunotherapy works well in glioblastoma (GBM) preclinical mouse models, the therapy has not demonstrated efficacy in humans. To address this anomaly, we developed a novel humanized microbiome (HuM) model to study the response to immunotherapy in a preclinical mouse model of GBM. Methods We used 5 healthy human donors for fecal transplantation of gnotobiotic mice. After the transplanted microbiomes stabilized, the mice were bred to generate 5 independent humanized mouse lines (HuM1-HuM5). Results Analysis of shotgun metagenomic sequencing data from fecal samples revealed a unique microbiome with significant differences in diversity and microbial composition among HuM1-HuM5 lines. All HuM mouse lines were susceptible to GBM transplantation, and exhibited similar median survival ranging from 19 to 26 days. Interestingly, we found that HuM lines responded differently to the immune checkpoint inhibitor anti-PD-1. Specifically, we demonstrate that HuM1, HuM4, and HuM5 mice are nonresponders to anti-PD-1, while HuM2 and HuM3 mice are responsive to anti-PD-1 and displayed significantly increased survival compared to isotype controls. Bray-Curtis cluster analysis of the 5 HuM gut microbial communities revealed that responders HuM2 and HuM3 were closely related, and detailed taxonomic comparison analysis revealed that Bacteroides cellulosilyticus was commonly found in HuM2 and HuM3 with high abundances. Conclusions The results of our study establish the utility of humanized microbiome mice as avatars to delineate features of the host interaction with gut microbial communities needed for effective immunotherapy against GBM.


Sign in / Sign up

Export Citation Format

Share Document