scholarly journals Effect of Forcing Temperature on Time to Flower of Coreopsis grandiflora, Gaillardia ×grandiflora, Leucanthemum ×superbum, and Rudbeckia fulgida

HortScience ◽  
1998 ◽  
Vol 33 (4) ◽  
pp. 663-667 ◽  
Author(s):  
Mei Yuan ◽  
William H. Carlson ◽  
Royal D. Heins ◽  
Arthur C. Cameron

Scheduling crops to flower on specific dates requires a knowledge of the relationship between temperature and time to flower. Our objective was to quantify the effect of temperature on time to flower and plant appearance of four herbaceous perennials. Field-grown, bare-root Coreopsis grandiflora (Hogg ex Sweet.) `Sunray', Gaillardia ×grandiflora (Van Houtte) `Goblin', and Rudbeckia fulgida (Ait.) `Goldsturm', and tissue culture—propagated Leucanthemum ×superbum (Bergman ex J. Ingram) `Snowcap' plants were exposed to 5 °C for 10 weeks and then grown in greenhouse sections set at 15, 18, 21, 24, or 27 °C under 4-hour night-interruption lighting until plants reached anthesis. Days to visible bud (VB), days to anthesis (FLW), and days from VB to FLW decreased as temperature increased. The rate of progress toward FLW increased linearly with temperature, and base temperatures and degree-days of each developmental stage were calculated. For Coreopsis, Leucanthemum, and Rudbeckia, flower size, flower-bud number, and plant height decreased as temperature increased from 15 to 26 °C.

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 861B-861 ◽  
Author(s):  
Mei Yuan ◽  
William H. Carlson ◽  
Royal D. Heins ◽  
Arthur C. Cameron

Scheduling crops to flower for specific dates requires a knowledge of the relationship between temperature and time to flower. Our objective was to determine the relationship between temperature and time to flower of four herbaceous perennials. Field-grown, bare-root Coreopsis grandiflora `Sunray', Gaillardia grandiflora `Goblin', Rudbeckia fulgida `Goldsturm', and tissue culture-propagated Chrysanthemum superbum `Snow Cap' were exposed to 5C for 10 weeks. They were grown at 15, 18, 21, 24 or 27C under 4-h night interruption lighting. Time to visible bud (VB) and first flower (FLW) were recorded. Days to VB, days to FLW, and days from VB to FLW decreased as temperature increased. Time to flower at 15C was 70, 64, 96, and 54 days and 24, 39, 48, and 36 days at 27C for Coreopsis, Gaillardia, Rudbeckia, and Chrysanthemum, respectively. The 27C temperature apparently caused devernalization on Coreopsis because only 40% of the plants flowered. The effects of temperature on flower size, flower bud number, and plant height also are presented.


HortScience ◽  
1997 ◽  
Vol 32 (5) ◽  
pp. 861-865 ◽  
Author(s):  
Catherine M. Whitman ◽  
Royal D. Heins ◽  
Arthur C. Cameron ◽  
William H. Carlson

The influence of cold treatments on flowering in Campanula carpatica Jacq. `Blue Clips' was determined. Plants with 10 to 12 nodes (P1) and 12 to 16 nodes (P2), in 128-cell (10-mL cell volume) and 50-cell (85-mL cell volume) trays, respectively, were stored at 5 °C for 0, 2, 4, 6, 8, 10, 12, or 14 weeks under a 9-hour photoperiod. They then were transplanted and forced in a 20 °C greenhouse under a 9-hour photoperiod with a 4-hour night interruption (NI) (2200 to 0200 hr). Time to visible bud and to flowering in P1 decreased slightly as the duration of cold treatment increased. Flowering was hastened by ≈10 days after 14 weeks at 5 °C. Cold treatments had no significant effect on time to visible bud or flower in P2. The number of flower buds on P1 did not change significantly in response to cold treatments, while flower bud count on P2 increased by up to 60% as duration of cold treatments increased. Final height at flowering of both ages decreased 10% to 20% with increasing duration of cold exposure. To determine the relationship between forcing temperature and time to flower, three plant sizes were forced under a 9-hour photoperiod with a 4-hour NI (2200 to 0200 hr) at 15, 18, 21, 24, or 27 °C. Plants flowered more quickly at higher temperatures, but the number and diameter of flowers were reduced. Days to visible bud and flowering were converted to rates, and base temperature (Tb) and thermal time to flowering (degree-days) were calculated. Average Tb for forcing to visible bud stage was 2.1 °C; for forcing to flower, 0.0 °C. Calculated degree-days to visible bud were 455; to flower, 909.


2001 ◽  
Vol 19 (3) ◽  
pp. 140-144
Author(s):  
Gary J. Keever ◽  
J. Raymond Kessler ◽  
James C. Stephenson

Abstract A study was conducted to determine the effects of night-interrupted (NI) lighting initiated at different times in late winter on several herbaceous perennials produced outdoors in a southern nursery setting. Treatments were NI lighting beginning February 1, February 15, March 1, March 15, and a natural photoperiod. NI lighting accelerated flowering in ‘Goldsturm’ coneflower (Rudbeckia fulgida Ait. ‘Goldsturm’) 26–46 days in 1999 and 51–75 days in 2000, and in ‘Coronation Gold’ yarrow (Achillea x ‘Coronation Gold’) 2–9 days in 1999 and 2–11 days in 2000. Flower and flower bud counts increased 82–100% in ‘Coronation Gold’ achillea in 1999, 44–51% in ‘Butterfly Blue’ scabious (Scabiosa columbaria L. ‘Butterfly Blue’) and 100–151% in ‘Alaska’ shasta daisy (Leucanthemum x superbum Bergmans ex. J. Ingram ‘Alaska’) compared to counts of plants under natural photoperiod. With few exceptions, plant height increased under all NI lighting treatments, but in only ‘Goldsturm’ coneflower did it reduce plant quality. Clump verbena (Verbena canadensis L.) was minimally affected by NI lighting, and speedwell (Veronica spicata L. ‘Sunny Border Blue’) was not affected at all.


1981 ◽  
Vol 113 (7) ◽  
pp. 569-574 ◽  
Author(s):  
A. B. Stevenson

AbstractThe effect of temperature on development of the carrot rust fly, Psila rosae (F.), was determined at constant temperatures in the laboratory. The relationship between rate of development and temperature was essentially linear from 10° to 17.5°C but began to diverge from linearity between 17.5° and 20°C. Estimated threshold temperatures (t) and thermal constants (K) for development of overwintered pupae were 2.3°C and 319 degree-days (dd) for first emergence and 1.8°C and 368 dd for 50% emergence. For laboratory-reared stages, t and K values were 4.1°C and 102 dd for egg hatch, 2.0°C and 642 dd for development from egg to mature larvae, and 3.0°C and 107 dd for pupation. Development in the laboratory from egg (less than 24 h old) to adult was completed in 59, 70, and 81 days at 20°, 17.5°, and 15°C respectively; no threshold or thermal constant was estimated because few or no individuals completed development to adult at 12.5° or 10°C within expected times, presumably because diapause was induced at these temperatures.


2008 ◽  
Vol 44 (No. 1) ◽  
pp. 19-24 ◽  
Author(s):  
R. Malina ◽  
J. Praslička

Temperature-dependent development, longevity and parasitism of the parasitoid Aphidius ervi Haliday was measured at four constant temperatures between 15°C and 30°C using Aphis pomi de Geer as host. The thresholds for egg-mummy and mummy-adult development were 6.8°C and 3.9°C, respectively. Development into mummies required an average of 146.3 degree-days (DD), while development into adults took an average of 85.3 DD. Longevity was increasing linearly in the range from 15°C to 25°C (8–15 days), but was lower at 30°C (11 days). The relationship between parasitism, recorded as percent aphids mummified, and temperature was increasing at the temperatures 15–25°C, but decreasing at higher temperatures; 10.8% of the aphids were parasitised at 15°C, 15.9% at 25°C and 14.6% at 30°C. These results are compared with previously reported data on temperature-dependent development of A. ervi on a different host.


2000 ◽  
Vol 125 (4) ◽  
pp. 436-441 ◽  
Author(s):  
Genhua Niu ◽  
Royal D. Heins ◽  
Arthur C. Cameron ◽  
William H. Carlson

Pansy [Viola ×wittrockiana Gams. `Delta Yellow Blotch' (Yellow) and `Delta Primrose Blotch' (Primrose)] plants were grown in a greenhouse under two CO2 concentrations [ambient (≈400 μmol·mol-1) and enriched (≈600 μmol·mol-1)], three daily light integrals (DLI; 4.1, 10.6, and 15.6 mol·m-2·d-1), and nine combinations of day and night temperatures created by moving plants every 12 h among three temperatures (15, 20, and 25 °C). Time to flower decreased and rate of flower development increased as plant average daily temperature (ADT) increased at all DLIs for Yellow or at high and medium DLIs for Primrose. Increasing the DLI from 4.1 to 10.6 mol·m-2·d-1 also decreased time to flower by 4 and 12 days for Yellow and Primrose, respectively. Both cultivars' flower size and Yellow's dry weight [(DW); shoot, flower bud, and total] decreased linearly as plant ADT increased at high and medium DLIs, regardless of how temperature was delivered during day and night. DW in Yellow increased 50% to 100% when DLI increased from 4.1 to 10.6 mol·m-2·d-1 under both CO2 concentrations. Flower size in Yellow and Primrose increased 25% under both CO2 conditions as DLI increased from 4.1 to 10.6 mol·m-2·d-1, but there was no increase between 10.6 and 15.6 mol·m-2·d-1, regardless of CO2 concentration. Plant height and flower peduncle length in Yellow increased linearly as the difference between day and night temperatures (DIF) increased; the increase was larger under lower than higher DLIs. The ratio of leaf length to width (LL/LW) and petiole length in Yellow increased as DIF increased at medium and low DLIs. Carbon dioxide enrichment increased flower size by 4% to 10% and DW by 10% to 30% except for that of the shoot at medium DLI, but did not affect flower developmental rate or morphology. DW of vegetative and reproductive parts of the plant was correlated closely with photothermal ratio, a parameter that describes the combined effect of temperature and light.


2014 ◽  
Vol 32 (1) ◽  
pp. 19-26
Author(s):  
Gary J. Keever ◽  
J. Raymond Kessler ◽  
James C. Stephenson

The effects of bulking duration on growth and flowering of ‘Goldsturm’ black-eyed Susan (Rudbeckia fulgida Ait. ‘Goldsturm’) and ‘Moonbeam’ coreopsis (Coreopsis verticillata L. ‘Moonbeam’) forced into flower under nursery conditions were evaluated as part of a system for the accelerated production of herbaceous perennials requiring long days to flower. Bulking duration treatments were established by a factorialization of potting date (September 24, October 13, December 2, and December 14, 2009) and night-interrupted lighting (NIL) start date (February 1, February 22, and March 15, 2010). Leaf counts of black-eyed Susan at the beginning of NIL increased linearly with progressively longer bulking durations based on potting date and NIL start date, although the effect was more pronounced when compared across potting dates. Based on leaf counts, black-eyed Susan potted in December were still in the juvenile phase when NIL was begun on February 1, 2010. Stem counts of black-eyed Susan at first flower followed a similar pattern as leaf counts. Black-eyed Susan given NIL flowered 40 to 59 days before plants under natural photoperiod (NP). Flower plus flower bud counts of black-eyed Susan at first flower increased linearly with increasing bulking duration based on potting date: by 325, 268, and 243% when NIL was begun on February 1, February 22, and March 15, respectively. Flower counts also increased linearly approximately 46% with increasing bulking duration based on NIL start dates, but only when plants were potted in December. At first flower, plant height of black-eyed Susan given NIL increased linearly as bulking duration increased based on potting date, but did not differ when trended across the NIL start dates. Days to flower of coreopsis decreased with increasing bulking duration, while stem counts increased with bulking duration, and the number of marketable plants was greater when plants were repotted on the three earliest dates compared to those bulked the shortest duration. Effects of bulking duration on flower plus flower bud counts and height of coreopsis were inconsistent.


Author(s):  
D. T. Gauld ◽  
J. E. G. Raymont

The respiratory rates of three species of planktonic copepods, Acartia clausi, Centropages hamatus and Temora longicornis, were measured at four different temperatures.The relationship between respiratory rate and temperature was found to be similar to that previously found for Calanus, although the slope of the curves differed in the different species.The observations on Centropages at 13 and 170 C. can be divided into two groups and it is suggested that the differences are due to the use of copepods from two different generations.The relationship between the respiratory rates and lengths of Acartia and Centropages agreed very well with that previously found for other species. That for Temora was rather different: the difference is probably due to the distinct difference in the shape of the body of Temora from those of the other species.The application of these measurements to estimates of the food requirements of the copepods is discussed.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Rui Zhang ◽  
Yujie Meng ◽  
Hejia Song ◽  
Ran Niu ◽  
Yu Wang ◽  
...  

Abstract Background Although exposure to air pollution has been linked to many health issues, few studies have quantified the modification effect of temperature on the relationship between air pollutants and daily incidence of influenza in Ningbo, China. Methods The data of daily incidence of influenza and the relevant meteorological data and air pollution data in Ningbo from 2014 to 2017 were retrieved. Low, medium and high temperature layers were stratified by the daily mean temperature with 25th and 75th percentiles. The potential modification effect of temperature on the relationship between air pollutants and daily incidence of influenza in Ningbo was investigated through analyzing the effects of air pollutants stratified by temperature stratum using distributed lag non-linear model (DLNM). Stratified analysis by sex and age were also conducted. Results Overall, a 10 μg/m3 increment of O3, PM2.5, PM10 and NO2 could increase the incidence risk of influenza with the cumulative relative risk of 1.028 (95% CI 1.007, 1.050), 1.061 (95% CI 1.004, 1.122), 1.043 (95% CI 1.003, 1.085), and 1.118 (95% CI 1.028, 1.216), respectively. Male and aged 7–17 years were more sensitive to air pollutants. Through the temperature stratification analysis, we found that temperature could modify the impacts of air pollution on daily incidence of influenza with high temperature exacerbating the impact of air pollutants. At high temperature layer, male and the groups aged 0–6 years and 18–64 years were more sensitive to air pollution. Conclusion Temperature modified the relationship between air pollution and daily incidence of influenza and high temperature would exacerbate the effects of air pollutants in Ningbo.


Sign in / Sign up

Export Citation Format

Share Document