scholarly journals (223) The Effect of Commercial Home Garden Fertilizers on the Growth and Yield of Two Chinese Cabbage Varieties

HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1074C-1074
Author(s):  
Hector Valenzuela ◽  
Ted Goo ◽  
Ray Uchida ◽  
Susan Migita

Home gardening is a popular year-round recreational activity in Hawaii that helps to increase community food security in suburban and rural communities where high levels of poverty and unemployment exist. Updated fertilizer recommendations and accurate information about the latest products allows home gardeners to improve crop growth, and to minimize nutrient imbalances in the soil, pest problems, and environmental risks from nutrient runoff or leaching. Two field experiments were conducted in Oahu, Hawaii, to evaluate several new products in the market for the production of two home-garden Chinese cabbage varieties. The treatments included Miracle Grow, a new Miracle Grow Plus formulation, Plant Power 2003 nutrient solution, a Maui Liquid Compost product, and a standard fertilizer control (150 kg·ha-1 N rate). Each treatment consisted of a 6-m long row with 30-cm plant spacing in the row. Each treatment was replicated four times in a completely randomized block design, for a total of 40 plots (two varieties × five treatments × four replications). Data collected included soil fertility before initiation and after experiment completion, tissue nutrient analysis, plant height collected twice during the growing cycle, and head weight and length measured at harvest time. The variety Pagoda was more responsive to fertilizer applications, showing an average of 30% yield increases between the best and poorest treatment, compared to 20% for `China Express'. Overall, the Miracle Grow formulations outperformed the other products. The tissue nutrient data showed tissue nutrient levels above those recommended by the Extension Service. The treatments with highest yield response also showed greater symptoms of “black heart” from possible boron deficiency.

2021 ◽  
Vol 9 (3) ◽  
pp. 204-210
Author(s):  
Collins EGBUCHUA ◽  
Emmanuel Chukudinife ENUJEKE

Field experiments were conducted during 2017 and 2018 cropping seasons at Illah, Delta North ecological zone of Nigeria to investigate the appropriate rates of NPK fertilizer and irrigation intervals in relation to yield response of water melon (Citrullus lunatus). The site had sandy loam texture, low in organic carbon (0.38%), low in total nitrogen (0.064%), available phosphorus (6.83 mgkg-1) and cation exchange capacity (6.74 cmolkg-1). The fertilizer rates were (0:0:0), (50:25:25), (80:40:40), and (120:60:60) KgN, P2O5 and K2O/ha and irrigation regimes of 6:12:18 days. It was a factorial experiment laid out in a Randomized Complete Block Design with three replicates. Results indicated that increase in fertilizer rates from 0:0:0 to 80:40:40 kg/ha significantly increased growth and fruit yield. Further increase to 120:60:60 kg/ha depressed yield. Increase irrigation intervals from 6 -12 days also influenced significantly growth and fruit yield and further increase to 18 days intervals affected negatively the parameters. Interaction effects between fertilizer x irrigation intervals were not significant. Correlation analysis showed that the growth and yield characters were significant and positively correlated with fruit yield. Results indicated that fertilizer rates and 12 days irrigation interval were adequate and recommended for increased production of watermelon in the study area.


Author(s):  
Judy Mwende Wambua ◽  
Shadrack Ngene ◽  
Nicholas K. Korir ◽  
Winnie Ntinyari ◽  
Joseph P. Gweyi-Onyango

Water scarcity of fresh water in Sub-Saharan has led to utilization of the wastewater in home gardening and also in commercial production of vegetables. Wastewater is associated with various substances including nutrients and heavy metals hence it is pertinent to evaluate its effects on growth and yield of vegetables. An experiment was conducted to evaluate the effect of waste water released from the municipal council on the biomass accumulation in African leafy vegetables. Field experiments were carried out in two seasons and one greenhouse experiment. The field trial was laid out in a Randomized Complete Block Design (RCBD) and in the greenhouse the treatments were arranged in Complete Randomized Design (RCD) replicated three times. Four leafy vegetables were the treatments replicated three times. The vegetables were irrigated with waste water. Plant samples were collected at 6 WAP and 12 WAP, partitioned and dried in an oven and later weighed using electronic weighing balance. The findings revealed differences in biomass accumulation into various organs. Black nightshade depicted the highest leaf dry matter in the greenhouse at both 6 weeks after plant (WAP) and 12 WAP (24.62 g and 81.12 g respectively). Cowpea showed the highest increment (7 folds) in leaf weight between 6 to 12 WAP as compared to was paltry 3.6 folds. The highest stem dry weight was obtained in the amaranth species at 6 WAP and 12 WAP both in the greenhouse; recording 32.59 g and 90.12 g respectively. A similar trend was noted in root dry weight and root: shoot ratio. Cowpea had the least biomass accumulation potential across all the parameters in both seasons and in the greenhouse. The increased biomass growth is an indication sufficient availability of nutrient that promoted vibrant plant growth and also less toxicity from the heavy metals. Therefore, waste water can be put into use to enhance improved productivity of African leafy vegetables.


2021 ◽  
Vol 4 (2) ◽  
pp. 1021-1033
Author(s):  
Nguyen Thi Loan ◽  
Tran Thi My Can

To study the effects of cover methods and nitrogen (N) levels on the growth and yield components of tomato Cv. Pear F1, field experiments with a 4x3 factorial design were conducted in the 2019 spring and winter seasons using a randomized complete block design with three replications. The cover methods included four treatments: bare soil (BS), black plastic mulch (BPM), transparent polypropylene row cover (RC), and a combination of BPM and RC (BPMRC) with the RC removed approximately 30 days after transplanting. Nitrogen (N) was applied at three levels (150, 180, and 210 kg N ha-1). Using BPM and RC generally led to an increased air temperature, air humidity, soil moisture, and soil temperature compared to the BS treatment. Higher N rates (180 and 210 kg N ha-1) did not result  in different tomato fruit sizes and fruit weights but positively increased fruit yield and quality (Brix values and fruit dry weight) as compared to the 150 kg N ha-1 addition. The cover methods positively affected the yield components and fruit yield of tomato as well as the fruit characteristics compared to the BS treatment. Using cover materials (BPM and RC) combined with a higher N application significantly increased the yield attributes and fruit yield. The highest fruit yield was achieved under the mulching treatment by black plastic (BPM treatment) combined with a 210 kg N ha-1 application, resulting in 50.90 tons ha-1 in the spring and 58.27 tons ha-1 in the winter.


2020 ◽  
Vol 25 (2) ◽  
pp. 2107-2113
Author(s):  
H. E. Rabbee ◽  
N. J. Methela ◽  
B. Hossain ◽  
M. R. I. Suhel

The present experiment was carried out at Agricultural Research field, Noakahali Science and Technology University, Noakhali, Bangladesh during the period from September 2018 to February 2019 to find out the effects of Vermicompost and Farmyard manure growth and yield of Broccoli. The single factor experiment was carried out by Randomized Complete Block Design (RCBD) with three replications. Three treatments viz., T0= Control, T1= Vermicompost and T2= Farm Yard Manure as well as Centeuro variety were used. Data were recorded from different stages of plant growth on plant height at different days after transplanting, number of leaves/plant, leaf length, leaf diameter, plant spread, 50% curd initiation days, 50% curd maturation days, curd diameter, Marketable curd weight, Net curd weight and Yield/plot. All the recorded parameters were statistically significant among the treatments. The tallest plant (43.67cm) can be recorded from T1 (vermicompost) whereas lower plant height (38.10cm) was notified from control (T0). The maximum number of leaves (16.03) recorded from vermicompost treated plant where minimum from control (T0; 13.28). Highest leaf length (40.67cm), leaf diameter (16.22cm), plant spread (47.91cmü), early curd initiation (73.22 days), early curd maturation (89.72 days), curd diameter (16.16cm), marketable curd weight (452.67g), net curd weight (361.43g) and yield/plot (3.94kg) was found from vermicompost treated plant is compared with Farmyard manure whereas lowest data recorded from control. Observing the results it can be stated that using of vermicompost treated plants gave better growth and yield contributing characters of Broccoli in contemporary with other treatments.


2009 ◽  
Vol 23 (4) ◽  
pp. 503-506 ◽  
Author(s):  
John D. Everitt ◽  
J. Wayne Keeling

Field experiments were conducted in Hale Co., TX, in 2005 and 2006 to determine the effects of 2,4-D amine and dicamba applied at varying rates and growth stages on cotton growth and yield, and to correlate cotton injury levels and lint yield reductions. Dicamba or 2,4-D amine was applied at four growth stages including cotyledon to two-leaf, four- to five-leaf, pinhead square, and early bloom. Dicamba and 2,4-D amine were applied at 1/2, 1/20, 1/200, and 1/2000 of the recommended use rate. Crop injury was recorded at 14 days after treatments and late-season, and cotton lint yields were determined. Across all growth stages, 2,4-D caused more crop injury and yield loss than dicamba. Cotton lint was reduced more by later applications (especially pinhead square) and injury underestimated yield loss with 2,4-D. Visual estimates of injury overestimated yield loss when 2,4-D or dicamba was applied early (cotyledon to two leaf) and was not a good predictor of yield loss.


HortScience ◽  
2012 ◽  
Vol 47 (8) ◽  
pp. 1038-1049 ◽  
Author(s):  
Kenneth J. Boote ◽  
Maria R. Rybak ◽  
Johan M.S. Scholberg ◽  
James W. Jones

Parameterizing crop models for more accurate response to climate factors such as temperature is important considering potential temperature increases associated with climate change, particularly for tomato (Lycopersicon esculentum Mill.), which is a heat-sensitive crop. The objective of this work was to update the cardinal temperature parameters of the CROPGRO-Tomato model affecting the simulation of crop development, daily dry matter (DM) production, fruit set, and DM partitioning of field-grown tomato from transplanting to harvest. The main adaptation relied on new literature values for cardinal temperature parameters that affect tomato crop phenology, fruit set, and fruit growth. The new cardinal temperature values are considered reliable because they come from recent published experiments conducted in controlled-temperature environments. Use of the new cardinal temperatures in the CROPGRO-Tomato model affected the rate of crop development compared with prior default parameters; thus, we found it necessary to recalibrate genetic coefficients that affect life cycle phases and growth simulated by the model. The model was recalibrated and evaluated with 10 growth analyses data sets collected in field experiments conducted at three locations in Florida (Bradenton, Quincy, and Gainesville) from 1991 to 2007. Use of modified parameters sufficiently improved model performance to provide accurate prediction of crop and fruit DM accumulation throughout the season. Overall, the average root mean square error (RMSE) over all experiments was reduced 44% for leaf area index, 71% for fruit number, and 36% for both aboveground biomass and fruit dry weight simulations with the modified parameters compared with the default. The Willmott d index was higher and was always above 0.92. The CROPGRO-Tomato model with these modified cardinal temperature parameters will predict more accurately tomato growth and yield response to temperature and thus be useful in model applications.


2021 ◽  
Vol 19 (1) ◽  
pp. 31-47
Author(s):  
Y. Garba ◽  
Z. Yakubu ◽  
A.I. Yakubu ◽  
J. Alhassan ◽  
M. Gana ◽  
...  

Two field experiments were conducted at the Research Farm of the Ibrahim Badamasi Babangida University, Lapai, Niger State during the 2018 and 2019 rainy seasons to determine the effect of neem fertilizer rates and weed control methods on the growth and yields of soybeans. The experimental treatments were made up of four neem fertilizer rates (0, 50, 100 and 150 kg ha-1) and six weed control methods (pendimethalin at 1.5 kg a.i ha-1 followed by one hoe weeding, pendimethalin at 2.0 kg a.i. ha-1 followed by diuron at 1.5 kg a.i ha-1, weeding once at 3 WAS, weeding twice at 3 and 6 WAS, weed free and weedy check. The experiment was a 3 × 3 factorial experiment laid out in a Randomize complete block design replicated three times. TGX 1448 – 2E variety of soybean was used for the study. Result showed that weed control efficiency was better with the use of 150 kg ha-1 of neem fertilizer, while decrease in weed dry matter was obtained at 50 kg ha-1. Increase in number of leaves and leaf area were encouraged with 150 kg ha-1 of neem fertilizer. Weed free treatments recorded the highest grain yield and 100 seed weight of soybean. Pendimethalin at 1.5 or 2.0 kg a.i ha-1 supplemented with one hoe weeding or diuron at 1.5 kg a.i ha-1 respectively can be an alternative for better control of weeds to obtain greater yield of soybean in the study area.


2018 ◽  
Vol 63 (1) ◽  
pp. 11-26
Author(s):  
Emmanuel Imoloame ◽  
Kafayat Ahmed

Field experiments were conducted during the 2015 and 2016 cropping seasons at the Teaching and Research (T & R) Farm of the College of Agriculture, Kwara State University, Malete, to determine the effect of cropping patterns on weed infestation, growth and yield of a maize/soybean intercrop in the southern Guinea savanna of Nigeria. The experiments consisted of six treatments as follows: one row of maize alternated with one row of soybean (1:1), one row of maize alternated with two rows of soybean (1:2), two rows of maize alternated with one row of soybean (2:1), two rows of maize alternated with two rows of soybean (2:2), sole maize (1:0) and sole soybean (0:1). The treatments were laid out in a randomized complete block design with three replicates. Data collected were subjected to analysis of variance and means were separated by the least significant difference (LSD) at the 5% level of probability. Results showed that sole soybean consistently suppressed weeds and resulted in a higher yield. Similarly, the 2:1 ratio of maize to soybean did not only reduce weed density, it produced significantly higher yields of maize and lower yield of soybean, and had the higher land equivalent ratio and economic returns followed by sole maize.


HortScience ◽  
2005 ◽  
Vol 40 (3) ◽  
pp. 887a-887
Author(s):  
W.B. Evans ◽  
Y. Vizzier-Thaxton ◽  
P. Hudson ◽  
K. Paridon

Mississippi is one of the nation's largest broiler litter producing states. Interest in using litter and other organic waste products, such as compost, in horticultural systems is increasing in the state and region. The objective of this research was to determine the influences of composted broiler litter (CBL) on three aspects of vegetable crop productivity: growth and yield, microbiological safety, and mineral nutrition. This report focuses on the first two objectives. Compost was made in a covered, turned windrow for a blend of broiler litter and hardwood sawdust. Responses to CBL were tested in two vegetables: collard (Brassica oleracea var. Acephala) and tomato (Lycopersicon esculentum). Rates of CBL ranged from 0 to 5 tons/acre, preplant incorporated in a randomized complete block design with four replicates for each species in two separate experiments in 2004. Testing of the CBL, the soil after application, leaves, and harvested organs found no significant influence of CBL on pathogenic microbe concentrations. At each of five sampling dates through commercial crop maturity, collard (Brassica oleracea var. Acephala) fresh and dry weight per plant increased linearly with CBL applications up to 5 tons/acre. Tomato (Lycopersicon esculentum) shoot fresh weight increased with increasing CBL applications at each sampling date. Marketable fruit yield increased linearly with increasing CBL applications. Total fruit yield response to CBL was best described by a quadratic equation.


2011 ◽  
Vol 6 (No. 1) ◽  
pp. 10-20 ◽  
Author(s):  
O.O. Odubanjo ◽  
A.A. Olufayo ◽  
P.G. Oguntunde

Field experiments were conducted at the Agricultural Engineering Experimental Farm of The Federal University of Technology, Akure, during 2006/2007 and 2007/2008 seasons to investigate the response of cassava under drip irrigation. The experiment was laid out in a randomised complete block design (RCBD) with three replications. The treatments were based on four different water regimes; with T100 receiving 100% available water (AW), T<sub>50</sub> and T<sub>25</sub> receiving 50% and 25% of AW and T<sub>0</sub> with zero irrigation (control treatment). Disease free stems of the cassava cultivar TMS 91934 were planted at a spacing of 1 m by 1 m. The results indicated that T<sub>100</sub> full treatment produced the highest average total dry matter yield of 49.12 and 37.62 t/ha in 2006/07 and 2007/08 cropping seasons, respectively. However, the average total dry matter production in T<sub>50</sub>, T<sub>25</sub>, and T<sub>0</sub> showed significant differences in their values. Low total dry matter yields of 7.12 and 5.92 t/ha, respectively, were associated with T<sub>0</sub> for the two cropping seasons. The total water use of 1491.75 and 1701.13 mm was recorded for T<sub>100</sub>, while total water use of 729.00 and 651.13 mm were obtained for T<sub>0</sub> in the two cropping seasons. The water use efficiency determined for the two cropping seasons ranged between 7.38 kg/ha and 32.93 kg/ha. The percentages of total water applied from total water use for T<sub>100</sub> were 51.11% and 61.72%, while 14.83% and 17.85% were recorded for T<sub>25 </sub>for 2006/07 and 2007/08 cropping seasons, respectively.


Sign in / Sign up

Export Citation Format

Share Document