scholarly journals Morphology and Postharvest Performance of Geogenanthus undatus C. Koch & Linden ‘Inca’ after Application of Ancymidol or Flurprimidol

HortScience ◽  
2007 ◽  
Vol 42 (3) ◽  
pp. 544-549 ◽  
Author(s):  
Amy L. Burton ◽  
Svoboda V. Pennisi ◽  
Marc W. van Iersel

Excessive internode elongation and leaf senescence are common problems with foliage plants transferred to interiorscapes. The authors’ objective was to determine whether plant growth regulators applied late in the production cycle could control growth during production and improve interiorscape performance. In addition, the authors wanted to quantify the effect of irradiance on growth and morphology during the production phase and in the interiorscape. Geogenanthus undatus C. Koch & Linden ‘Inca’ plants were grown under one of two photosynthetic photon fluxes (PPF; 50 or 130 μmol·m−2·s−1), and were treated with either α−(methylethyl)-α-[4-(trifluoromethoxy)phenyl]-5-pyrimidinemethanol (flurprimidol) or α-cyclopropyl-α-(4-methoxyphenyl)-5-pyrimidinemethanol (ancymidol) during the week 12 production, at 0.5, 1.0, or 1.5 mg/pot of active ingredient. The high PPF resulted in significantly higher leaf, stem, root, and total dry weight, and leaf area, but lower leaf area ratio (leaf area divided by total plant dry weight) compared with the low PPF. After production, plants were placed in a simulated interior environment for 4 months under a PPF of 15 μmol·m−2·s−1 and a photoperiod of 12 hours/day. Production PPF did not affect most growth parameters after 4 months in the interior environment, except for the root-to-shoot ratio. Under low-production PPF, root-to-shoot ratios were lower than under high-production PPF. For both growth regulators, the height and growth indexes were lower than for control plants, but flurprimidol offered greater control than ancymidol. Flurprimidol-treated plants had lower root dry weight and root-to-shoot ratios compared with ancymidol-treated and control plants. Applications of ancymidol or flurprimidol administered to G. undatus C. Koch & Linden ‘Inca’ late during the production cycle resulted in significant growth control and, therefore, superior plant performance throughout the postharvest period.

HortScience ◽  
2005 ◽  
Vol 40 (3) ◽  
pp. 892e-892
Author(s):  
Bodie V. Pennisi

Geogenanthus Ínca' is a new cultivar introduced the foliage plant industry which shows promise in interior plantscaping. The objectives of this study were twofold; to examine the effects of ancymidol and flurprimidol on G. `Inca' growth and determine if plant growth retardant (PGR) application could improve postharvest performance. Four weeks before attaining marketable sizes, the plants were drenched with ancymidol or flurprimidol at 0.0, 0.5, 1.0, or 1.5 mg (a.i.). Plants were then placed in interior-evaluation rooms under 12 μmol·m–2·s–1. Ancymidol or flurprimidol reduced plant height, width, growth index and total leaf area, total dry weight and shoot to root ratio of Geogenathus `Inca'. Flurprimidol increased the deposition of insoluble carbohydrates (starch) and altered the pattern of starch deposition; higher starch content was found in stem tissue compared to foliage tissue. The effects of ancymidol or flurprimidol persisted in the postharvest environment. After 4 months under low irradiance, PGR-treated plants exhibited higher quality, i.e., compact stature and reduced leaf and shoot necrosis. This research has potential significance for the foliage plant industry and it showed that a single drench application at label recommended rates of ancymidol or flurprimidol late in the production cycle can produce desired growth control of Geogenanthus `Inca' in the postharvest environment. Plants retain aesthetic characteristics for extended period thus necessitating lower replacement rate.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 468b-468
Author(s):  
Stephen F. Klauer ◽  
J. Scott Cameron ◽  
Chuhe Chen

After promising results were obtained with an open-style split trellis (two top wires) in its initial year, two new trials were established in 1997 in northwest (Lynden) and southwest (Woodland) Washington. For the split trellis, actual yields were 33% (machine-picked 1/2 season) and 17% (hand-picked) greater, respectively, for the two locations compared to the conventional trellis (one top wire). In Woodland, canes from the split trellis had 33% more berries, 55% more laterals, 69% more leaves, and 25% greater leaf area compared with the conventional trellis. Greatest enhancement of these components was in the upper third of the canopy. Laterals were also shorter in this area of the split canopy, but there was no difference in average total length of lateral/cane between trellis types. Total dry weight/cane was 22% greater in the split trellis, but component partitioning/cane was consistent between the two systems with fruit + laterals (43%) having the greatest above-ground biomass, followed by the stem (30% to 33%) and the leaves (21% to 22%). Measurement of canopy width, circumference, and light interception showed that the split-trellis canopy filled in more quickly, and was larger from preanthesis through postharvest. Light interception near the top of the split canopy was 30% greater 1 month before harvest with 98% interception near the top and middle of that canopy. There was no difference between the trellis types in leaf CO2 assimilation, spectra, or fluorescence through the fruiting season, or in total nitrogen of postharvest primocane leaves.


Helia ◽  
2001 ◽  
Vol 24 (35) ◽  
pp. 135-148
Author(s):  
Mohammed El Midaoui ◽  
Ahmed Talouizte ◽  
Benbella Mohamed ◽  
Serieys Hervé ◽  
Ait Houssa Abdelhadi ◽  
...  

SUMMARYAn experiment has been carried out in order to study the behaviour under mineral deficiency of three sunflower genotypes, a population variety (Oro 9) and two hybrids (Mirasol and Albena). Sunflower seedlings were submitted to five treatments: N deficiency (N0), P deficiency (P0), K deficiency (K0), N and K deficiency (N0K0) and a control. Plants were harvested when they reached 3-4 true pairs of leaves. Growth parameters measured (height, total leaf area, root length, root and shoot dry mater) were all significantly reduced by mineral deficiency. Leaf area was most reduced by N0 (-61%) and P0 (-56%). Total dry matter was most affected by N0 (-63%) and by N0K0 (-66%). Genotype comparisons showed that Oro 9 had the highest shoot dry matter while Albena had the lowest root dry matter. Effect of mineral deficiency on content and partitioning of N, P, K, Ca and Na was significant and varied according to treatments and among plant parts. Shoot dry weight was significantly correlated with root N content (r2=0.81) and root K content (r2=-0.61) for N0 and K0.


2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Nur Edy Suminarti ◽  
A.Y. Edy Guntoro ◽  
A. N. Fajrin

Suminarti et al, 2018. Effect of Source and Dosage of Organic Materials on Changes in Soil Chemical Properties, Growth and Yield of Sorghum Plants (Sorghum bicolor L.Moench) var. KD4 in Dry Land Jatikerto, Malang. JLSO 7(2): Agricultural extensification is the right step to anticipate conditions of food insecurity. This refers to two reasons, namely (1) proliferation of land conversion activities, and (2) sorghum is a carbohydrate-producing plant that is quite tolerant when planted on dry land. The objective of this study was to obtain information about the sources and doses of organic matter that are appropriate to changes in soil chemical properties, growth and yield of sorghum plants, and has been carried out in the dry land of Jatikerto, Malang. A split plot designs with three replications were used in this study, sources of organic material (blothong, UB compost and cow dung) as the main plot, and doses of organic matter (125%, 100% and 75%) as a subplot. Soil analysis was carried out 3 times, i.e. before planting, after application of organic matter and at harvest. The agronomic observations were carried out destructively at 80 days after planting (DAP) including the components of growth (root dry weight, leaf area, and total dry weight of the plant) and harvest at the age of 90 DAP.F test at 5% level was used to test the effect of treatment, while the difference between treatments was based on LSD level of 5%.The results showed that there was a significant interaction between the source and dosage of organic matter on the leaf area and total dry weight, the highest yield was obtained in blothong at various doses. Higher yields of seeds per hectare were also found in blotong: 1.76 tons ha-1, and 1.73 tons ha-1 on 125% doses of organic matter. Blotong application is able to provide elements of N, P and K soil respectively 18.3%, 85.68% and 8.42% for plant.


2020 ◽  
Vol 11 (1) ◽  
pp. 25
Author(s):  
AHMAD TAOFIK ◽  
SOFIYA HASANI ◽  
AYU CAHYANINGTYAS ◽  
BUDY FRASETYA

The paitan plant contains allelopathic compounds for other plants so that the utilize of paitan plant as a source of liquid organic fertilizer (LOF) has not been widely applied. This research aimed to study the interaction between LOF dosage and appropriate application method of LOF to increase the growth of kailan plants. The research conducted at experimental garden of UIN Bandung from June-August 2016. The experimental design was a completely randomized design with two factors and replicated four times. The first factor was application methods (A), i.e. a1=direct application to the soil, and a2= spraying. The second factor was LOF dosage (T), i.e. t0: 0 ml plant-1, t1: 20 ml plant-1, t2: 40 ml plant-1, t3: 60 ml plant-1, t4: 80 ml plant-1. The growth parameters observed i.e. plant height (14, 21, 28, 35 and 42 Day after Transplanting (DAT)), leaf area 42 DAT, plant dry weight 42 DAT, and plant fresh weight 42 DAT. The data then analyzed with analysis of variance at a significant level of 5%. If the analysis of variance was significant, the Duncan multiple range test was used at α=5%. The research results showed there was no interaction between method of application with a various dosage of paitan LOF to all of the growth parameters. The application paitan LOF showed similar growth in terms of plant height, leaf area, plant dry, and plant fresh weight. The application method of paitan LOF direct to the soil or spraying to leaves can not increase kailan plant growth.


2021 ◽  
Vol 25 (8) ◽  
pp. 1513-1518
Author(s):  
A.S. Gunu ◽  
M. Musa

Field trial was carried out during the 2019 rainy season (June to October) at the Dryland Teaching and Research Farm of the Faculty of Agriculture, Usmanu Danfodiyo University, Sokoto to determine the growth and yield of sorghum varieties in the study area. The treatments consisted of five (5) sorghum varieties (Samsorg 45, Samsorg 46, Janjari, Yartawa and Jardawa), the treatments were laid out in a Randomized Complete Block Design (RCBD) replicated three (3) times. Data were collected on the growth and yield of the crop. Janjari and Jardawa varieties were higher in plant height. Jardawa and Yartawa varieties were higher in number of leaves. Janjari and Yartawa varieties were higher in total dry weight. Janjari, Jardawa and Yartawa varieties were higher in harvest index. Yartawa variety was higher in leaf area, leaf area index and 1000-grain weight. Jardawa variety was higher in panicle length. Janjari variety was early in number of days to heading, flowering, and maturity and was higher in dry stalk weight. The grain yield (249 – 1506kg ha-1 ) was higher in Janjari and Yartawa varieties (1268 – 1506 kg ha-1). Based on the findings of this research, it could be concluded that Janjari and Yartawa varieties performed better than other varieties in the study area.


Author(s):  
Y. Rajasekhara Reddy ◽  
G. Ramanandam ◽  
P. Subbaramamma ◽  
A. V. D. Dorajeerao

A field experiment was carried out during rabi season of 2018-2019, at college farm, College of Horticulture, Dr. Y.S.R. Horticultural University, Venkataramannagudem, West Godavari District, Andhra Pradesh. The experiment was laidout in a Randomised Block Design with eleven treatments (viz., T1- NAA @ 50 ppm, T2-NAA @ 100 ppm, T3-GA3 @ 50 ppm,  T4-GA3 @ 100 ppm, T5-Thiourea @ 250 ppm, T6-Thiourea @ 500 ppm, T7-28-Homobrassinolide @ 0.1 ppm, T8-28-Homobrassinolide @ 0.2 ppm, T9-Triacontinol @ 2.5 ppm, T10-Triacontinol @ 5 ppm, T11-(Control) Water spray) and three replications. The treatments were imposed at 30 and 45 DAT in the form of foliar spray. Foliar application of GA3@ 100 ppm (T4) had recorded the maximum plant height (108.20 cm), leaf area (9.53 cm2) and leaf area index (0.74). Foliar application of thiourea @ 250 ppm (T5) had recorded the maximum values with respect to number of primary branches (15.03 plant-1), number of secondary branches (83.40 plant-1), plant spread (1793 cm2 plant-1), fresh weight (376.29 g plant-1), dry weight (103.54 g plant-1) and number of leaves plant-1((298.8). The same treatment (T5) had recorded the highest values with respect to crop growth rate (1.44 gm-2d-1), chlorophyll-a (1.40 mg g-1), chlorophyll-b (0.076 mg g-1) and total chlorophyll contents (1.48 mg g-1) in the leaves.


1958 ◽  
Vol 51 (3) ◽  
pp. 347-352 ◽  
Author(s):  
R. H. M. Langer

1. Swards of S. 48 timothy and S. 215 meadow fescue growing alone or together were sampled at intervals of 3 weeks throughout the season. The number and weight of leaves, stems and ears were determined, and leaf area was estimated.2. Despite high rainfall, the total number of tillers in both species declined from the beginning of the experiment until early July, but increased again from then onwards until the original complement had been approximately restored. The number of leaves failed to show a corresponding increase in the autumn because each tiller carried fewer leaves than earlier in the year.3. In the spring total dry weight increased more rapidly in meadow fescue than in timothy which in turn out-yielded meadow fescue later in the season. Both species attained their greatest dry weight soon after ear emergence, a period which was marked by considerable crop growth and relative growth rates.4. Leaf area index reached a maximum before total dry weight had increased to its highest level, but then declined in both species. Meadow fescue differed from timothy by producing a second crop of foliage after the summer with a leaf area index of about 7. This second rise appeared to be due mainly to increased leaf size in contrast to timothy whose leaves became progressively smaller towards the end of the season.5. The differences in growth between the species discussed with reference to their dates of ear emergence which in this experiment differed by about 6 weeks.


2018 ◽  
Vol 39 (5) ◽  
pp. 1937 ◽  
Author(s):  
Caroline Farias Barreto ◽  
Leticia Vanni Ferreira ◽  
Savana Irribarem Costa ◽  
Andressa Vighi Schiavon ◽  
Tais Barbosa Becker ◽  
...  

For strawberry cultivation in Brazil, producers are dependent on imported seedlings. An alternative strategy to reduce this dependence is the use of seedlings obtained from nursery plants grown in a protected environment. However, as these seedlings are produced in the summer and planted at the end of this season or the spring of the following year, it is necessary to control growth to reduce the energy costs of the plants. The objective of this study was to evaluate the effect of different concentrations and periods of application of proexadione calcium (ProCa) on growth control of strawberry seedlings. The experiment was carried out in a greenhouse with seedlings of the cultivars ‘Aromas’ and ‘Camarosa’, produced by rooting stolons and kept in polystyrene trays of 72 cells in a substrate of carbonized rice husk. The experimental design was completely randomized, with a 4 × 2 factorial scheme (4 concentrations of ProCa: 0, 100, 200, and 400 mg L-1 × 2 periods of application: at 20 and 30 days after the planting period of rooting stolon). Plant survival, crown diameter, petiole length, total leaf area, specific leaf area, chlorophyll concentration, and dry mass of the crown and shoot were evaluated. The application of ProCa at 20 days after the planting period of the rooting stolon at the concentrations of 200 and 400 mg L-1 favored the reduction of petiole length in plants of ‘Aromas’ strawberry and total leaf aerial in ‘Camarosa’ strawberry. The application of ProCa from the concentration of 100 mg L-1 reduced the vegetative growth of ‘Aromas’ and ‘Camarosa’ strawberry seedlings cultivated in substrate.


2018 ◽  
Vol 7 (1) ◽  
pp. 60-84
Author(s):  
Monday Ubogu ◽  
Lucky O. Odokuma ◽  
Ejiro Akponah

P. australis, E. crassipes (in mangrove swamp) and S. officinarum (in rainforest) are capable of tolerating some levels of crude oil in soil. However, some important growth characteristics such speedy growths, extensive root system and increased biomass desirable for efficient rhizoremediation are depressed. To cushion this suppressive effects, plants were subjected to the following treatments: Plant + Soil (PS) (Control); Plant + Soil + Oil (PSO); Plant + Soil + Oil + Fertilizer (PSOF); Plant +Soil + Oil + Fertilizer + Microorganisms (PSOFM); and Plant + Soil + Fertilizer + Microorganisms + Solarization (PSOFMS). Treatments were monitored for 120 days to determine their effects on the following growth parameters: Germination, germination percentage, height, and root length, dry weight, and leaf area. Results indicated that treatments PSOF, PSOFM and PSOFMS enhanced all growth parameters over contaminated untreated soil (PSO) with the exception of germination in P. australis and S. officinarum; while root length, leaf area in E. crassipes were statistically the same for PS, PSO, PSOFM and PSOFMS (P ˂ 0.05). Overall, growth enhancement efficiencies of the applied treatments were in the order: PSOFM ˃ PSOF ˃ PSOFMS. Thus, growth of these plants can be enhanced in crude oil contaminated soil by the above treatments for efficient rhizoremediation.


Sign in / Sign up

Export Citation Format

Share Document