scholarly journals Vegetative and Reproductive Response of Olive Cultivars to Moderate Saline Water Irrigation

HortScience ◽  
2008 ◽  
Vol 43 (2) ◽  
pp. 320-327 ◽  
Author(s):  
Sebastian Weissbein ◽  
Zeev Wiesman ◽  
Yhonathan Ephrath ◽  
Moshe Silberbush

Selected superior olive cultivars cultivated on a large scale in various countries in the Mediterranean region were tested in a special saline irrigation experimental plot established in 1997 in the center of the semiarid Israeli Negev area. The plot comprised two subplots containing the same 12 olive cultivars in a mirror image design. One subplot was drip-irrigated with tap water (1.2 dS·m−1) and the second with moderate saline water (4.2 dS·m−1). All cultivation practices applied to the two subplots were similar in terms of fertilization, irrigation, soil leaching, and so on. The present study summarizes the vegetative and reproductive response of the tested olive cultivar trees during the 5 years after they reached maturation and full yield. Evaluation of trunk growth, olive yield, oil percentage, olive oil yield, and fatty acid composition of the oil, sodium and chloride leaf levels, and soil fractions up to 90 cm enabled characterization and comparison of the horticultural performance of the various olive cultivars intensively cultivated with the two tested irrigation treatments. The data clearly showed a significant difference between the tested cultivars in terms of growth, yield, and oil parameters. Grouping the tested cultivars in terms of olive oil production yielded the following three groups: Group A—‘Barnea’, ‘Maalot’, and ‘Picholin’—their average oil yield ranged from 8 to 10 kg/tree; Group B—‘Souri’, ‘Frantoio’, ‘Leccino’, ‘Arbequina’, ‘Picual’, ‘Kalamata’, ‘Koroneiki’, and ‘Picholin di Morroco’—their average oil yield ranged from 5 to 8 kg/tree; and Group C—‘Picudo’—ranged from 3 to 4 kg/tree. Saline irrigation treatment at 4.2 dS·m−1 demonstrated only a low rate of retardation effect on growth or yield of olive trees compared with water at 1.2 dS·m−1 of the same cultivar in each subplot. The data obtained from the present study suggest that efficient productive cultivation of mature olive cultivars in Israeli Negev semiarid conditions, irrigated with moderate saline water, is closely related to proper soil leaching methodology and maintaining the soil electrical conductivity level in the root zone in a range lower than 6 dS·m−1.

HortScience ◽  
2018 ◽  
Vol 53 (11) ◽  
pp. 1562-1569
Author(s):  
Chi M. Do ◽  
Kate L. Delaporte ◽  
Vinay Pagay ◽  
Carolyn J. Schultz

Identifying productive food crops that tolerate moderate soil salinity is critical for global food security. We evaluate the salinity tolerance of Kunzea pomifera (muntries), a traditional Indigenous food plant that grows naturally in coastal regions of southern Australia and thrives on relatively low rainfall. A range of saline irrigation treatments were tested on four genotypes: tap water, 50, 200, 300, and 400 mm NaCl [Maarten’s Favorite (MF)] and up to 200 mm NaCl (MP1, SES2, and CJ1). After a 10-week saline irrigation treatment at 50 mm NaCl, SES2 appeared to have the highest salt tolerance of all genotypes based on no significant change in the number of secondary branches. At 50 mm NaCl, sodium accumulated significantly in roots but not the leaves of three genotypes, suggesting an active shoot exclusion mechanism. At 200 mm NaCl, plant growth decreased, Na+ and Cl− generally accumulated to significantly higher levels in leaves, compared with 50 mm NaCl, whereas potassium (K+) levels were unchanged. At high NaCl (300 and 400 mm), MF showed severe growth retardation with leaf symptoms appearing in week 9. Our results indicate that two genotypes of K. pomifera, SES2 and CJ1, are moderately salt tolerant based on modest reductions in three growth parameters at 50 mm NaCl, compared with MF and MP1. Further evaluation of the natural diversity of this species should reveal a range of diverse mechanisms of salinity tolerance thus providing a new fruit crop for moderately saline soils. Chemical names: NaCl (sodium chloride).


2007 ◽  
Vol 58 (3) ◽  
pp. 225 ◽  
Author(s):  
M. E. Rogers

The response of 4 temperate grass species (Lolium perenne cv. Victorian, Thinopyrum ponticum cv. Tyrell, Austrodanthonia richardsonii cv. Taranna, A. bipartita cv. Bunderra) to saline irrigated conditions was evaluated over 4 seasons at Tatura in northern Victoria. This experiment followed earlier research where the salt tolerance of ~20 species of grasses was evaluated in the greenhouse. Field plots were established under non-saline conditions and were irrigated with saline water at 1.6, 2.5, and 4.5 dS/m. Measurements made on these plots included dry-matter production, tissue ion (Na+, Cl–, K+, Mg2+, Ca2+) concentrations, in vitro dry-matter digestibility, root distribution, and soil chemistry. Soil salinity (EC1 : 5) and sodicity (SAR1 : 5) levels peaked at 0.30–0.60 m depth and reached 1.3 dS/m and 9.8, respectively, for the highest saline irrigation treatment. Cumulative plant dry-matter production was lower in T. ponticum compared with the Austrodanthonia species and L. perenne at all salinity levels, but in relative terms there was no difference in the salt tolerance among any of the 4 species (the reduction in dry weight at 4.5 dS/m was 10–15% for all species). Leaf tissue concentrations of Na+ and Cl– were significantly lower in A. richardsonii and A. bipartita compared with T. ponticum and L. perenne, and in vitro dry-matter digestibility tended to be greater in L. perenne under saline conditions than in the other 3 species. This research suggests that the 2 native Austrodanthonia species can be grown under moderately saline conditions—either under saline irrigation or in a dryland discharge area—in environments where perennial ryegrass may also be grown.


2005 ◽  
Vol 56 (8) ◽  
pp. 827 ◽  
Author(s):  
A. G. Levin ◽  
S. Lavee

The influence of girdling on flower type and number, inflorescence density, and fruit set in 3 different olive cultivars (Barnea, Picual, and Souri) under intensive growing conditions using saline irrigation water was studied for 3 years. The density of inflorescences on the branches was not affected by girdling in any of the 3 cultivars during any of the 3 consecutive years studied. Also, no clear relation between the number of flowers and girdling was found in any of the 3 cultivars tested. The percentage of perfect flowers on the girdled scaffolds of cvv. Barnea and Picual increased significantly, except for Picual in 2002 where no differences were observed. However, no such difference between the non-girdled and girdled scaffolds was observed in cv. Souri. Comparison of fruit set on non-girdled and girdled scaffolds showed a similar and generally positive response to the treatment in the examined cultivars. However, in the third year of the study, no significant difference between the non-girdled and girdled scaffolds was observed. A significantly higher yield of the girdled trees was measured in the 3 cultivars during the first year after the winter girdling. Due to the young age of the trees the effect of girdling on yield was not further recorded. Fruit size on the girdled scaffolds was smaller than those from the non-girdled ones, as a consequence a higher percentage of fruit set was observed on the first ones. The results presented in this study point to different varietal responses of olive trees to girdling. However, this might also be due to the young age of the trees in this study as well as the peculiar agronomic condition of the trees.


Author(s):  
Ahmed Al-Busaidi ◽  
Jaaman Rabeea ◽  
Mushtaque Ahmed ◽  
Salim Al-Rawahy

The utilization of marginal water resources for agriculture is receiving considerable attention. The lands irrigated with saline water are required to reduce salt accumulations through leaching and/or drainage practices. A field experiment was carried out to investigate the effect of saline irrigation and leaching fraction on barley (Hordeum vulgare L.) growth. For this purpose highly saline water was diluted to the salinity levels of 3, 6 and 9 dS m-1 and applied by drip irrigation at 0.0, 0.15, 0.20 and 0.25 leaching fractions (LF). The results of the experiment showed that both quantity and quality of water regulated salts distribution within the soil in the following manner: a) the salts were found higher near or immediate below the soil surface; b) an enhanced LF carried more salts down the soil horizon but there was no significant difference in plant yield between different treatments of leaching fractions. Salinity of water significantly impaired barley growth. The good drainage of sandy soil enhanced the leaching process and minimized the differences between leaching fractions. The increment in saline treatments (3, 6 and 9 dS m-1) added more salts and stressed plant growth. However, the conjunctive use of marginal water at proportional LF could be effective in enhancing the yield potential of crops in water-scarce areas. 


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 838B-838
Author(s):  
J.P. Mitchell ◽  
D.M. May ◽  
C. Shennan

Field studies were conducted in 1992 and 1993 to assess the effects of irrigation with saline drainage water on processing-tomato fruit yields and quality constituents. Saline water (ECiw = 7 dS/m) was used for 66% of the seasonal irrigation requirements in 1992 and 82% in 1993. Yields of tomatoes irrigated with saline water were maintained relative to nonsaline irrigation in 1992, but were decreased by 33% in 1993. Juice Brix and Bostwick consistency were generally improved by irrigation with saline water. pH was unaffected by irrigation treatment, and titratable acidity, an estimate of citric acid content, was increased only in 1993. Calculated quantities for various marketable processed product yields reflect the dominant influence of fresh fruit yield that masked, to a large extent, whatever quality enhancements that may have derived from saline irrigation. The substantial tomato yield reduction that occurred in the second year of this study in plots irrigated with saline drainage water, the gradual surface accumulation of boron, as well as the significant salt buildup in lower portions of the crop root zone following drainage water irrigations demonstrate definitive limitations to the reuse approach and restrict options for the crops that can be grown in this system and the frequency of saline drainage reuse.


Author(s):  
S. I. Mensah ◽  
C. Ekeke ◽  
M. Udom

Salinity affects various morphological and anatomical characters of plants thereby reducing the yield of the plant in the long run. Solanum aethiopicum L. is an economic plant that is versatile for human use ranging from food to traditional medicine. Experiment was conducted to assay the impact of saline irrigation on some growth parameters (plant height, leaf area, fresh weight, dry weight and size of stomatal complex). Results of the experiment showed that for most parameters studied that the values obtained for the treatments are reduced compared to the control, thereby establishing that saline water harmed S. aethiopicum L. There is no significant difference in the plant from week 5 (i.e. 2 weeks after application of saline water) but at week 6 and 7 (i.e. 3 and 4 weeks after application of saline water respectively), there was significant difference in the parameters. Therefore it is advised that S. aethiopicum L. be grown on soils with low or no content of salinity to maintain optimum growth and development of the plant.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1074E-1075
Author(s):  
Dagobiet Morales ◽  
Katrine A. Stewart

The effect of applying saline water (2.5 dS·m-1) via a drip irrigation system at different growth stages of mulched or nonmulched bell peppers (Capsicum annuum L. var. Red Knight) was investigated under greenhouse conditions. The study 6 × 2 factorial was arranged as a randomized complete-block design. The six irrigation treatments were: 1) control—nonsaline water throughout growth; 2) saline irrigation throughout growth; 3) saline irrigation from transplanting until formation of the first fruit set; 4) saline irrigation from transplanting until appearance of the first flower and from first harvest to final harvest; 5) saline irrigation from appearance of the first flower until first harvest; and 6) saline irrigation from fruit set until final harvest. A measurement of stomatal conductance (gs), transpiration (E), and photosynthesis (A) rates was performed during vegetative growth, at flowering, at fruit set, and during fruit growth and development. Mulched plants had higher photosynthetic rates than nonmulched plants, although values were only significant for treatments 2, 3, 5, and 6. In addition, nonmulched plants were slower to recover after periods of saline irrigation than mulched plants. Mulched plants had significantly greater yields than nonmulched plants regardless of irrigation treatment. Saline irrigation when applied throughout growth or from fruit formation until harvest reduced marketable yields by 38% and 45% compared with the control plants.


2016 ◽  
Vol 26 (3) ◽  
pp. 309-313
Author(s):  
Judson S. LeCompte ◽  
Amy N. Wright ◽  
Charlene M. LeBleu ◽  
J. Raymond Kessler

Greywater is a renewable irrigation alternative to potable water; however, its use as an irrigation source is limited by the potential for salt injury to plants. Research was conducted to determine salt tolerance of three common landscape species, small anise tree (Illicium parviflorum), ‘Henry’s Garnet’ sweetspire (Itea virginica), and muhly grass (Muhlenbergia capillaris). Two experiments were performed, one with high sodium chloride (NaCl) concentrations and one with low NaCl concentrations. Plants received daily irrigation of tap water containing one of the following NaCl concentrations: 0 (tap water); 2000, 4000, 6000, 8000, or 10,000 mg·L−1 (high NaCl); or 0 (tap water), 250, 500, or 1000 mg·L−1 (low NaCl) for 15 weeks. Plants were harvested after 5, 10, or 15 weeks. Root dry weight (RDW) and shoot dry weight (SDW) were determined at each harvest; survival was determined at experiment termination. Leaf tissue was analyzed for tissue macronutrient [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and, magnesium (Mg)], sodium (Na), and chlorine (Cl) concentrations in the high NaCl concentration experiment. With high NaCl, RDW and SDW decreased with increasing NaCl for all species. Anise and sweetspire had low or no survival, respectively, at the highest NaCl concentration; muhly grass had 100% survival regardless of treatment. In general, leaf macronutrient, Na, and Cl increased with increasing NaCl concentration. With low NaCl, there was no effect of NaCl concentration on RDW or SDW for all species. All three species continued to grow between harvest dates in the lower NaCl concentration experiment, whereas only anise and muhly grass continued to grow with high NaCl. Anise and muhly grass were tolerant of saline irrigation that could be expected from greywater. Sweetspire exhibited symptoms of salt stress (necrotic leaves and leaf drop, visual observation) at all NaCl concentrations including the lowest (250 mg·L−1), and should not be irrigated with saline water.


Author(s):  
L. M. Patil ◽  
S. R. Gomkale ◽  
S. S. Roy ◽  
J. R. Mori ◽  
V. K. Kauthale

The field experimentation was carried out at Instructional Farm, BAIF Development Research Foundation, Nanodara of Ahmadabad district during 2014 to 2018 with an objective to evaluate the response of the two ber varieties (Seb and Gola) to number of irrigations on the growth and yield of ber crop. It was also intended to understand effect of saline irrigation water on soil status as irrigation water of the study location is slightly saline in nature. The study was conducted in Split Plot Design with six replications. Treatments consisted of two irrigation schedule; normal irrigation at 15 days interval and life saving irrigation at 30 days interval and two varieties (Seb and Gola). Soil and irrigation water of the study location was analyzed using standard procedures for initial and yearly status, respectively.  Two ways ANOVA was carried out using R Studio Statistics Rx 64 software. Significance levels were tested at p≤0.05. The highest plant height (326.87 cm), girth size (60.75 cm), number of secondary branches per plant (7.24), dry leaf biomass per plant (3.96 kg), dry shoot weight per plant (16.65) as well as fruits per plant (337.58), fruit weight (56.96 g), fruit yield per plant (19.43 kg) and fruit yield per ha (5400 kg) were increased significantly with normal irrigation treatment (irrigations at 15 days interval) which was significantly superior over life saving irrigation. In case of varieties, all the parameters of the growth and yield of the crop were maximum for Gola variety compared to Seb. The pH, EC and SAR were comparatively lower in soil under life saving than normal irrigation.


2021 ◽  
Vol 44 (1) ◽  
pp. 194-202
Author(s):  
Funda Demir ◽  
Meral Yildirim Ozen ◽  
Emek Moroydor Derun

Abstract In this study, essential (Ca, Cr, Cu, Fe, K, Mg, Na, P, Zn), and non-essential (Al, Ni, Pb) element contents of the drinking and baby water samples which are sold in the local market and tap water samples in Istanbul were examined. It was determined that elements of Cr, Cu, Fe, P, Zn, Al, and Ni were below detection limits in all water samples. Among the non-essential elements analyzed in water samples, Pb was the only detected element. At the same time, the percentages that meet the daily element requirements of infants were also calculated. As a result of the evaluations made, there is no significant difference in infant nutrition between baby waters and other drinking waters in terms of the element content.


Sign in / Sign up

Export Citation Format

Share Document