scholarly journals Early-season Soil Moisture Deficit Reduces Sweetpotato Storage Root Initiation and Development

HortScience ◽  
2013 ◽  
Vol 48 (12) ◽  
pp. 1457-1462 ◽  
Author(s):  
Bandara Gajanayake ◽  
K. Raja Reddy ◽  
Mark W. Shankle ◽  
Ramon A. Arancibia

Sweetpotato [Ipomoea batatas (L.) Lam.] storage root formation is a complex developmental process. Little quantitative information is available on storage root initiation in response to a wide range of soil moisture levels. This study aimed to quantify the effects of different levels of soil moisture on sweetpotato storage root initiation and to develop functional relationships for crop modeling. Five levels of soil moisture, 0.256, 0.216, 0.164, 0.107, and 0.058 m3·m−3 soil, were maintained using sensor-based soil moisture monitoring and semiautomated programmed irrigation. Two commercial sweetpotato cultivars, Beauregard and Evangeline, were grown in pots under greenhouse conditions and treatments were imposed from transplanting to 50 days. Identification of storage roots was based on anatomical, using cross-sections of adventitious roots, and visual features harvested at 5-day intervals from 14 to 50 days after transplanting (DAT). Recorded time-series storage root numbers exhibited sigmoidal responses at all soil moisture levels in both cultivars. Time to 50% storage root initiation and maximum storage root numbers were estimated from those curves. Rate of storage root development was determined as a reciprocal of time to 50% storage root formation data. Time to 50% storage root initiation declined quadratically from 0.05 to 0.15 m3·m−3 soil moisture and increased slightly at the higher soil moisture levels in both the cultivars. Cultivars differed in time to 50% storage root initiation and the storage root developmental rate. Soil moisture optima for storage root initiation were 0.168 and 0.199 m3·m−3 soil, equivalent to 63% and 75% field capacity for cultivars Beauregard and Evangeline, respectively. The data and the inferences derived from the functional algorithms developed in this study could be used to advise growers to schedule irrigation more precisely, make planting decisions based on available soil moisture, and to develop sweetpotato crop models for field applications.

2002 ◽  
Vol 127 (2) ◽  
pp. 178-183 ◽  
Author(s):  
Makoto Nakatani ◽  
Masaru Tanaka ◽  
Masaru Yoshinaga

A late-storage root-forming mutant (`KM95-A68') of sweetpotato [Ipomoea batatas (L.) Poir.] was characterized to clarify the genetic and physiological mechanisms of storage root formation. This mutant originated from a somaclonal mutation of `Kokei No. 14'. Storage roots of `KM95-A68' are rare and, when formed, develop 2 or 3 weeks later than those of `Kokei No. 14' from which it originated. Morphological characteristics of the canopy and leaf photosynthetic rates of `KM95-A68' were similar to those of `Kokei No. 14'. No apparent differences were observed in the anatomy of root cross sections of `KM95-A68' and `Kokei No. 14'. An apparent increase in the root zeatin riboside (ZR) levels were observed in `Kokei No. 14' at storage root formation. Root ZR levels differed between `Kokei No. 14' and `KM95-A68'. The onset of increase in root ZR levels was delayed by 2 or 3 weeks in `KM95-A68' in comparison to `Kokei No. 14'. Maximum root ZR levels in `Kokei No. 14' were 2.2 times higher in comparison to `KM95-A68'. This appeared to be a factor in delayed storage root formation of `KM95-A68'. Results of reciprocal grafts of `KM95-A68' and `Kokei No. 14' indicated that the late storage root-forming characteristic of `KM95-A68' is a characteristic that arises from the root itself.


2017 ◽  
Vol 27 (6) ◽  
pp. 818-823 ◽  
Author(s):  
William B. Thompson ◽  
Jonathan R. Schultheis ◽  
Sushila Chaudhari ◽  
David W. Monks ◽  
Katherine M. Jennings ◽  
...  

Studies were conducted in North Carolina to determine the effect of holding durations (HDs) [0, 1, 3, 5, and 7 days before planting (DBP)] of ‘Covington’ sweetpotato (Ipomoea batatas) transplants on plant stand and storage root numbers and yield in production fields. In a second field study, the effect of preplant irrigation (PI) treatments (PI and nonirrigation) were evaluated along with the transplant HD on plant stand, storage root numbers, and yield. Transplants held for 7 DBP did not survive as well as the other treatments (lower plant stands) and had lower no. 1, marketable, and total storage root numbers and yields than other holding treatments. HD of 1 or 3 DBP resulted in higher plant stands, and no. 1, marketable, and total numbers of storage roots and yields than holding for 0, 5, or 7 DBP. This study affirms the importance of soil moisture at and shortly after planting for transplant survival and yield. Holding transplants for 1–3 DBP can improve stand establishment and yields when dry conditions occur either before or soon after planting. However, holding transplants for 7 DBP can result in reduced plant stands and yields when stress/dry conditions occur soon after planting.


Plant Methods ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Michael Gomez Selvaraj ◽  
Maria Elker Montoya-P ◽  
John Atanbori ◽  
Andrew P. French ◽  
Tony Pridmore

Abstract Background Root and tuber crops are becoming more important for their high source of carbohydrates, next to cereals. Despite their commercial impact, there are significant knowledge gaps about the environmental and inherent regulation of storage root (SR) differentiation, due in part to the innate problems of studying storage roots and the lack of a suitable model system for monitoring storage root growth. The research presented here aimed to develop a reliable, low-cost effective system that enables the study of the factors influencing cassava storage root initiation and development. Results We explored simple, low-cost systems for the study of storage root biology. An aeroponics system described here is ideal for real-time monitoring of storage root development (SRD), and this was further validated using hormone studies. Our aeroponics-based auxin studies revealed that storage root initiation and development are adaptive responses, which are significantly enhanced by the exogenous auxin supply. Field and histological experiments were also conducted to confirm the auxin effect found in the aeroponics system. We also developed a simple digital imaging platform to quantify storage root growth and development traits. Correlation analysis confirmed that image-based estimation can be a surrogate for manual root phenotyping for several key traits. Conclusions The aeroponic system developed from this study is an effective tool for examining the root architecture of cassava during early SRD. The aeroponic system also provided novel insights into storage root formation by activating the auxin-dependent proliferation of secondary xylem parenchyma cells to induce the initial root thickening and bulking. The developed system can be of direct benefit to molecular biologists, breeders, and physiologists, allowing them to screen germplasm for root traits that correlate with improved economic traits.


2013 ◽  
Vol 23 (3) ◽  
pp. 288-293 ◽  
Author(s):  
Ramón A. Arancibia ◽  
Jeffrey L. Main ◽  
Christopher A. Clark

Tip rot, or restricted end rot, is a new sweetpotato (Ipomoea batatas) disease/disorder in Mississippi with unknown etiology. Since pathogen isolations have been inconsistent, a relationship of this disorder with stress is proposed. This disease/disorder is manifested as a restricted lesion at or close to the proximal end of the storage root and appears after 2 to 4 weeks in storage. In many cases, the lesion necrosis expands internally. On-farm and research station studies with preharvest foliar applications of ethephon were conducted in Mississippi to determine the potential association of tip rot with ethephon-induced stress. In addition, the effects of ethephon rate and interval between application and harvest on tip rot were investigated. After 1 to 2 months in storage, tip rot incidence was observed mostly in storage roots from ethephon-treated plants. The increase in tip rot incidence was well correlated with ethephon rate. These results suggest that preharvest applications of ethephon trigger a response that results in the tip rot disorder.


2015 ◽  
Vol 25 (3) ◽  
pp. 340-348 ◽  
Author(s):  
Chen Jiang ◽  
Penelope Perkins-Veazie ◽  
Sylvia M. Blankenship ◽  
Michael D. Boyette ◽  
Zvezdana Pesic-VanEsbroeck ◽  
...  

A series of studies were conducted to better understand the occurrence and causes of internal necrosis (IN) in ‘Covington’ sweetpotato (Ipomoea batatas). Assessment of the problem among the industry was done for 2 years and revealed that IN was widespread in commercial storage facilities throughout the state of North Carolina; both incidence and severity were generally low (<10% incidence with minimal severity of symptoms). A few storage rooms had a high percentage of IN with severe storage root symptoms but results were inconsistent across years and among rooms. Preharvest studies with commercially used insecticides did not induce IN, but the harvest aid ethephon consistently induced IN with an incidence higher than 50%. Internal necrosis symptoms were not detectable at harvest, and earliest consistent incidence was observed 6 days after harvest (DAH) during the curing phase. Symptoms became more prevalent and severe at 30 DAH. However, in commercial storage rooms, no relationship was found between IN incidence and postcuring storage temperature or relative humidity (RH) conditions. Sweetpotato storage roots stored in air-tight barrels and exposed to 100 ppm ethylene after curing showed no relationship between the presence of ethylene gas in storage and incidence of IN. Our results indicate that IN incidence of ‘Covington’ is erratic with no obvious cause among storage rooms and that initiation of IN may occur most frequently during the first week following harvest.


2018 ◽  
Vol 5 (2) ◽  
pp. 78 ◽  
Author(s):  
Karlina Purbasari ◽  
Angga Rahabistara Sumadji

<p class="E-JOURNALAbstractBodyEnglish"><span>Sweet potatoes were potential plants in food diversification for rice substitution</span><span lang="IN">.</span><span> The plants could be found in some areas in Indonesia, such as in Ngawi Regency. The research aimed to find out the variation and morphological distinction in sweet potatoes in Ngawi Regency. The samples were taken randomly in Kedunggalar, Jogorogo, and Bringin Subdistrict. The sweet potatoes were tested with ANAVA and DMRT, Kruskal-Wallis and U-Mann Whitney with significant degree was 5%. There were variation in morphological leaves, storage root, and stems from the eight samples taken. Statistical analysis showed there were vivid distinction in the shape of the leaves, the lobes type, the central lobes, the petiole pigmentation, the colour of stems, the immature leaves colour, the storage roots shape, the dominant skin colour, the dominant flesh colour, and distribution of secondary flesh colour of anthosianine pigment. The variation among sweet potatoes were affected by genetic/ variety distinction and environment factors. </span></p>


2011 ◽  
Vol 64 ◽  
pp. 160-167 ◽  
Author(s):  
S.L. Lewthwaite ◽  
P.J. Fletcher ◽  
J.D. Fletcher ◽  
C.M. Triggs

The sweetpotato (Ipomoea batatas) crop is propagated vegetatively by field transplanting adventitious sprouts produced on storage roots retained from the previous seasons harvest This system promotes the persistence and accumulation of both viruses and spontaneous mutations A phenomenon known as cultivar decline has been reported internationally where the root yield and appearance of commercially grown sweetpotato cultivars appear to deteriorate over successive growing seasons The relative contributions of virus infection and plant mutation to cultivar decline are uncertain but both issues are addressed through the use of virustested tissue cultured propagation systems This study assessed the degree of decline for cultivars Owairaka Red and Beauregard within the New Zealand biophysical production environment Storage root yield decreased significantly with increasing field exposure for both cultivars (P


2021 ◽  
Author(s):  
Fuyun Hou ◽  
Zhen Qin ◽  
Taifeng Du ◽  
Yuanyuan Zhou ◽  
Aixian Li ◽  
...  

Abstract BackgroundSweetpotato(Ipomoea batatas (L.) Lam.) is one of the most important crops with high storage roots yield. Lignin affects the storage root formation. However, the molecular mechanisms of lignin biosynthesis in storage roots development have been lacking.ResultsTo reveal the molecular mechanism of lignin biosynthesis and identify new homologous genes in lignin biosynthesis during storage root development, the storage root (SR) at three different stages (D1, D2 and D3) in the two cultivars (Jishu25 and Jishu29) was investigated with full-length and second-generation transcriptome. A total of 52,137 transcripts and 21,148 unigenes were obtained after corrected with Hiseq2500 sequencing. Through the comparative analysis, 9577 unigenes were found to be differently expressed in the different stage in two cultivars. Among of them, 91 unigenes enriched in the phenylpropanoid biosynthesis, and 201 unigenes in hormone signal transduction pathway with KEGG analysis. Weighted gene co-expression network analysis of differentially expressed unigenes showed that lignin biosynthesis genes might be co-expressed with transcription factors such as AP2/ERF and MYB at the transcription level, and regulated by phytohormones auxin and GA3.ConclusionsTaken together, our findings will throw light on molecular regulatory mechanism of lignin biosynthesis involved in storage root development.


1970 ◽  
pp. 01-05
Author(s):  
Ncube Netsai ◽  
Mutetwa Moses, Mtaita Tuarira

There is significant variation in yield of storage roots and vines of sweet potato (Ipomoea batatas) among farmers due to use of different cutting positions and pruning of vines at different levels. This study was carried out to establish the cutting position and the vine pruning level that give the best yield of both the storage roots and vines. The study was conducted in a 3x3 factorial arrangement in Randomized Complete Block Design (RCBD) with three replications. Treatments included cutting position at three levels (apical cutting, middle cutting and basal cutting) and pruning at three levels, 0%, 25% and 50% respectively. Pruning was done. 50 days after planting. And storage root harvesting was done 100 days after planting. The two measurements were summed up to give the total vine weight. Storage root length, diameter and weight were measured at 100 DAP. Storage root length indicated significant difference (P<0.05) only among cutting positions with highest mean length (16.20 cm) obtained from apical cutting and the lowest (11.98 cm) from basal cutting. Storage root diameter, storage root weight and vine weight indicated significant interaction (P<0.05) of cutting position and vine pruning level. Highest mean root diameter and root weight were obtained from middle cutting and 25% vine pruning level, with the lowest being obtained from basal cutting and 50% vine pruning level. Highest vine weight was recorded from middle cutting and 50% vine pruning level, with the lowest being recorded from basal cutting and 0% vine pruning level. Both middle and apical stem cuttings can be recommended for higher storage root and vine yield. Vine pruning at 25% can be adopted for higher storage root yield while pruning at 50% can be suggested for higher vine yield.


1990 ◽  
Vol 115 (2) ◽  
pp. 288-293 ◽  
Author(s):  
Ajmer S. Bhagsari ◽  
Doyle A. Ashley

Field experiments with 15 sweet potato [Ipomoea batatas L. (Lam.)] genotypes were conducted to study the physiological basis of yield in 1981 and 1982. The leaf area index differed significantly among the sweet potato genotypes during early and late phases of growth, hut showed an inconsistent relationship with yield. Single leaf net photosynthesis ranged from 0.74 to 1.12 mg CO2/m' per sec. Canopy photosynthesis for sweet potato genotypes differed significantly in 1981, but not in 1982. It ranged from 0.81 to 1.16 mg CO2/m2 per sec in Aug. 1981. and from 0.63 to 0.88 mg CO2/m2 per sec in 1982. Four hours after “C-labeling, 14C-assimilate translocation from the treated leaf ranged from 21% to 46%, but did not differ significantly among the genotypes. At final harvest, harvest index [HI, defined as (storage root yield/total biological yield) × 100] of the genotypes varied from 43% to 77% and 31% to 75% for 1981 and 1982, respectively. Canopy photosynthesis during September was significantly correlated with storage root dry matter yield (r = 0.54*) in 1981 and with phytomass (above-ground biomass plus storage roots) (r = 0.60*) in 1982. Both phytomass and HI were significantly correlated with storage root matter yield. Canopy photosynthetic evaluation of sweet potato germplasm may be-more relevant when the storage root sinks are at an advanced stage of development. Our study suggests that yield is poorly predicted by Pn, particularly when the genotypes have different leaf sizes.


Sign in / Sign up

Export Citation Format

Share Document