scholarly journals Relative Salt Tolerance of Seven Texas Superstar® Perennials

HortScience ◽  
2015 ◽  
Vol 50 (10) ◽  
pp. 1562-1566 ◽  
Author(s):  
Youping Sun ◽  
Genhua Niu ◽  
Christina Perez

Salt tolerance of seven Texas Superstar® perennials [Malvaviscus arboreus var. drummondii (Turk’s cap), Phlox paniculata ‘John Fanick’ (‘John Fanick’ phlox), Phlox paniculata ‘Texas Pink’ (‘Texas Pink’ phlox), Ruellia brittoniana ‘Katie Blue’ (‘Katie Blue’ ruellia), Salvia farinacea ‘Henry Duelberg’ (‘Henry Duelberg’ salvia), Salvia leucantha (mexican bush sage), and Verbena ×hybrida ‘Blue Princess’ (‘Blue Princess’ verbena)] was evaluated in a greenhouse experiment. Plants were irrigated with a nutrient solution at electrical conductivity (EC) of 1.1 dS·m−1 (control) or a salt solution at EC of 5.0 or 10.0 dS·m−1 (EC 5 or EC 10) for 8 weeks. ‘John Fanick’ and ‘Texas Pink’ phlox plants in EC 5 had severe salt foliage damage, while those in EC 10 were died. Mexican bush sage in EC 10 had severe salt foliage damage. Turk’s cap, ‘Katie Blue’ ruellia, ‘Henry Duelberg’ salvia, and ‘Blue Princess’ verbena had minor foliar damage regardless of treatment. EC 5 reduced the shoot dry weight (DW) by 45% in ‘Texas Pink’ phlox and 11% to 18% in ‘Katie Blue’ ruellia, ‘Henry Duelberg’ salvia, and mexican bush sage, but did not impact the shoot DW of Turk’s cap and ‘John Fanick’ phlox. EC 10 further decreased the shoot DW of ‘Katie Blue’ ruellia, ‘Henry Duelberg’ salvia, and mexican bush sage plants by 32%, 29%, and 56%, respectively. EC 5 decreased leaf net photosynthesis (Pn) of ‘Texas Pink’ phlox and mexican bush sage, while EC 10 reduced Pn of all species except ‘Henry Duelberg’ salvia and ‘Blue Princess’ verbena. ‘Katie Blue’ ruellia and ‘Blue Princess’ verbena had relatively lower leaf Na concentration and ‘John Fanick’ phlox, ‘Texas Pink’phlox, and mexican bush sage had higher leaf Cl concentrations. In summary, Turk’s cap, ‘Katie Blue’ ruellia, ‘Henry Duelberg’ salvia, and ‘Blue Princess’ verbena were the most tolerant perennials, and ‘John Fanick’ phlox, ‘Texas Pink’ phlox, and mexican bush sage were the least tolerant to salinity.

HortScience ◽  
2019 ◽  
Vol 54 (11) ◽  
pp. 2056-2062 ◽  
Author(s):  
Asmita Paudel ◽  
Ji Jhong Chen ◽  
Youping Sun ◽  
Yuxiang Wang ◽  
Richard Anderson

Sego SupremeTM is a designated plant breeding and introduction program at the Utah State University Botanical Center and the Center for Water Efficient Landscaping. This plant selection program introduces native and adapted plants to the arid West for aesthetic landscaping and water conservation. The plants are evaluated for characteristics such as color, flowering, ease of propagation, market demand, disease/pest resistance, and drought tolerance. However, salt tolerance has not been considered during the evaluation processes. Four Sego SupremeTM plants [Aquilegia barnebyi (oil shale columbine), Clematis fruticosa (Mongolian gold clematis), Epilobium septentrionale (northern willowherb), and Tetraneuris acaulis var. arizonica (Arizona four-nerve daisy)] were evaluated for salt tolerance in a greenhouse. Uniform plants were irrigated weekly with a nutrient solution at an electrical conductivity (EC) of 1.25 dS·m−1 as control or a saline solution at an EC of 2.5, 5.0, 7.5, or 10.0 dS·m−1 for 8 weeks. After 8 weeks of irrigation, A. barnebyi irrigated with saline solution at an EC of 5.0 dS·m−1 had slight foliar salt damage with an average visual score of 3.7 (0 = dead; 5 = excellent), and more than 50% of the plants were dead when irrigated with saline solutions at an EC of 7.5 and 10.0 dS·m−1. However, C. fruticosa, E. septentrionale, and T. acaulis had no or minimal foliar salt damage with visual scores of 4.2, 4.1, and 4.3, respectively, when irrigated with saline solution at an EC of 10.0 dS·m−1. As the salinity levels of treatment solutions increased, plant height, leaf area, and shoot dry weight of C. fruticosa and T. acaulis decreased linearly; plant height of A. barnebyi and E. septentrionale also declined linearly, but their leaf area and shoot dry weight decreased quadratically. Compared with the control, the shoot dry weights of A. barnebyi, C. fruticosa, E. septentrionale, and T. acaulis decreased by 71.3%, 56.3%, 69.7%, and 48.1%, respectively, when irrigated with saline solution at an EC of 10.0 dS·m−1. Aquilegia barnebyi and C. fruticosa did not bloom during the experiment at all treatments. Elevated salinity reduced the number of flowers in E. septentrionale and T. acaulis. Elevated salinity also reduced the number of shoots in all four species. Among the four species, sodium (Na+) and chloride (Cl–) concentration increased the most in A. barnebyi by 53 and 48 times, respectively, when irrigated with saline solution at an EC of 10.0 dS·m−1. In this study, C. fruticosa and T. acaulis had minimal foliar salt damage and less reduction in shoot dry weight, indicating that they are more tolerant to salinity. Epilobium septentrionale was moderately tolerant to saline solution irrigation with less foliar damage, although it had more reduction in shoot dry weight. On the other hand, A. barnebyi was the least tolerant with severe foliar damage, more reduction in shoot dry weight, and a greater concentration of Na+ and Cl–.


HortScience ◽  
2017 ◽  
Vol 52 (12) ◽  
pp. 1810-1815 ◽  
Author(s):  
Lifei Chen ◽  
Youping Sun ◽  
Genhua Niu ◽  
Qiang Liu ◽  
James Altland

Relative salt tolerance of eight Berberis thunbergii (japanese barberry) cultivars (B. thunbergii ‘Celeste’, ‘Kasia’, ‘Maria’, ‘Mini’, and ‘Talago’; B. thunbergii var. atropurpurea ‘Concorde’, ‘Helmond Pillar’, and ‘Rose Glow’) was evaluated in a greenhouse experiment. Plants were irrigated with nutrient solution at an electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solutions at an EC of 5.0 or 10.0 dS·m−1 (EC 5 or EC 10) once a week for 8 weeks. At 4 weeks after treatment, all barberry cultivars in EC 5 had minimal foliar damage with visual scores of 4 or greater (visual score 0: dead, 5: excellent). At 8 weeks after treatment, in EC 5, ‘Helmond Pillar’, ‘Maria’, ‘Mini’, and ‘Rose Glow’ plants exhibited slight foliar salt damage with an average visual score of 3.5, whereas ‘Celeste’, ‘Concorde’, ‘Kasia’, and ‘Talago’ had minimal foliar salt damage with an averaged visual score of 4.4. However, most barberry plants in EC 10 exhibited severe foliar salt damage 4 weeks after treatment with the exception of ‘Concorde’ and were dead 8 weeks after treatment. Compared with control, at the end of the experiment (8 weeks of treatments), shoot dry weight (DW) of ‘Celeste’, ‘Helmond Pillar’, ‘Maria’, and ‘Rose Glow’ in EC 5 was reduced by 47%, 47%, 50%, and 42%, respectively, whereas shoot DW of ‘Concorde’, ‘Kasia’, ‘Mini’, and ‘Talago’ in EC 5 did not change. In EC 10, shoot DW of ‘Celeste’, ‘Concorde’, ‘Kasia’, and ‘Talago’ was reduced by 75%, 35%, 55%, and 46%, respectively. The averaged sodium (Na) concentration of all barberry cultivars in EC 5 and EC 10 was 34 and 87 times, respectively, higher than the control, whereas leaf chloride (Cl) concentration of all barberry cultivars in EC 5 and EC 10 was 14–60 and 29–106 times, respectively, higher than the control. Growth, visual quality, and performance index (PI) were all negatively correlated with leaf Na and Cl content in all cultivars, suggesting that excessive Na and Cl accumulation in the leaf tissue led to growth reduction, salt damage, and death. In summary, ‘Concorde’, ‘Kasia’, and ‘Talago’ were relatively salt tolerant; ‘Helmond Pillar’, ‘Maria’, ‘Mini’, and ‘Rose Glow’ were relatively salt sensitive; and ‘Celeste’ was in between the two groups. Generally, barberry plants had moderate salt tolerance and can be irrigated with marginal water at an EC of 5 dS·m−1 or lower with slight foliar damage.


2012 ◽  
Vol 22 (3) ◽  
pp. 362-367 ◽  
Author(s):  
Ryo Matsuda ◽  
Chieri Kubota ◽  
M. Lucrecia Alvarez ◽  
Guy A. Cardineau

Using greenhouse tomato (Solanum lycopersicum) as a model system to produce pharmaceutical proteins, electrical conductivity (EC) of hydroponic nutrient solution was examined as a possible factor that affects the protein concentration in fruit. Transgenic tomato plants, expressing F1-V protein, a plant-made candidate subunit vaccine against plague (Yersinia pestis), were grown hydroponically at high (5.4 dS·m−1) or conventional EC [2.7 dS·m−1 (control)] with a high-wire system in a temperature-controlled greenhouse. There was no significant difference in plant growth and development including final shoot dry weight (DW), leaf area, stem elongation rate, or leaf development rate between high EC and control. Net photosynthetic rate, transpiration rate, and stomatal conductance (gS) of leaves were also not significantly different between EC treatments. For both EC treatments, immature green fruit accumulated DW at a similar rate, but dynamics observed in fruit total soluble protein (TSP) and F1-V during the fruit growth were different between the two ECs. Fruit TSP concentration per unit DW decreased while TSP content per whole fruit increased as fruit grew, regardless of EC. However, TSPs were significantly lower in high EC than in control. Fruit F1-V concentration per unit DW and F1-V content per whole fruit were also lower in high EC than in control. Our results found that increasing EC of nutrient solution decreased TSP including the vaccine protein in fruit, suggesting that adjusting nutrient solution EC at an appropriate level is necessary to avoid salinity stress in this transgenic tomato.


Horticulturae ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 54 ◽  
Author(s):  
Genhua Niu ◽  
Youping Sun ◽  
Triston Hooks ◽  
James Altland ◽  
Haijie Dou ◽  
...  

A greenhouse study was conducted to assess the relative salt tolerance of 11 cultivars of hydrangea: Hydrangea macrophylla ‘Ayesha’, ‘Emotion’, ‘Mathilda Gutges’, ‘Merritt’s Supreme’ and ‘Passion’; H. paniculata ‘Interhydia’ and ‘Bulk’; H. quercifolia ‘Snowflake’; H. serrata ‘Preciosa’; and H. serrata × macrophylla ‘Sabrina’ and ‘Selina’. Plants were treated with a nutrient solution at an electrical conductivity (EC) of 1.0 dS·m−1, and nutrient solution-based saline solutions at an EC of 5.0 dS·m−1 (EC 5) or 10 dS·m−1 (EC 10). The study was repeated in time (Experiments 1 and 2). In both experiments, by the fourth week after treatment, ‘Bulk’ plants in EC 10 exhibited severe salt damage with most of them dead. ‘Interhydia’ was also sensitive, showing severe salt damage in EC 10 with a high mortality rate by the end of the experiment. The leaf area and total shoot dry weight (DW) of all cultivars in EC 5 and EC 10 treatments were significantly reduced compared to the control. Leaf sodium (Na+) and chloride (Cl−) concentrations were negatively correlated with visual quality, leaf area and shoot DW. The salt-sensitive cultivars ‘Bulk’, ‘Interhydia’ and ‘Snowflake’ had inherently low leaf Na+ and Cl− concentrations in both control and salt-treated plants compared to other cultivars. Salt tolerance varied among species and cultivars within H. macrophylla. Among the 11 cultivars, H. macrophylla ‘Ayesha’ and two hybrids, ‘Sabrina’ and ‘Selina’, were relatively salt-tolerant. H. macrophylla ‘Merritt’s Supreme’ and ‘Mathilda’ were moderately tolerant. H. paniculata ‘Bulk’ was the most sensitive, followed by H. paniculata ‘Interhydia’, and then by H. serrata ‘Preciosa’ and H. macrophylla ‘Passion’, as evidenced by high mortality and severe salt damage symptoms. H. quercifolia ‘Snowflake’ and H. macrophylla ‘Emotion’ were moderately salt-sensitive.


FLORESTA ◽  
2018 ◽  
Vol 48 (4) ◽  
pp. 573 ◽  
Author(s):  
Camila Adaime Gabriel ◽  
Paulo Cezar Cassol ◽  
Marcia Aparecida Simonete ◽  
Letícia Moro ◽  
Priscylla Pfleger ◽  
...  

Eucalyptus crops in Southern Brazil are generally conducted in acidic soils, thus their yield can be increased by lime and gypsum applications. The objective of this study was to evaluate the effect of lime and gypsum applications on soil chemical attributes and initial growth of Eucalyptus benthamii and Eucalyptus dunnii in a Humic Cambisol (Inceptisol). The experiment was conducted in a greenhouse, with seedlings of both species of eucalyptus grown in soil treated with different rates of lime (0, 3, 6, and 12 Mg ha-1), and gypsum (0, 6, 3, 12.6, and 25.2 Mg ha-1). At 90 days after application of the treatments, the soil chemical attributes and growth components of eucalyptus seedlings. The lime increased the production shoot dry weight, however, the response to gypsum was negative. The lime increased the soil pH, exchangeable calcium (Ca), base saturation (V %), and slightly the soil electrical conductivity, decreased the soil aluminium saturation (m %), and promoted little reduction in the exchangeable potassium (K) and magnesium (Mg) contents. The gypsum didn't alter the soil pH, but decreased the m%, increased soil phosphorus (P) contents, and expressively increased the electrical conductivity, which may have had a negative effect on the eucalyptus growth. In conclusion, the addition of limestone decreases the soil acidity and benefits the growth of eucalyptus seedlings. However, the addition of gypsum has no expressive effects upon those variables, but it can decrease the growth of seedlings when the rates are excessive.


2018 ◽  
Vol 46 (2) ◽  
pp. 153 ◽  
Author(s):  
Sugiyanta , ◽  
I Made Dharmika ◽  
Dan Dedeh Siti Mulyani

ABSTRACT<br />    <br />As one of the silica (Si) accumulator, rice (Oryza sativa L.) requires large amounts of silica for growth. This study aimed to determine the effect of liquid silica fertilizer application on lowland rice growth and yield, and its roles in drought stress responses. The experiments were conducted at Sawah Baru rice field and Cikabayan Greenhouse Experiment Station, IPB, Bogor during the period of January to May 2016. The field experiment was set up in a randomized complete block design with 7 treatments and three replications. The greenhouses experiment was arranged in a split-plot randomized block design with 3 replications. The main plots were 5 levels of liquid silica fertilizer application, while the subplot was 5 level of various soil water contents. The results of the field experiment showed that the application of liquid silica fertilizer increased rice shoot dry weight, total and productive tiller numbers, and yield per plant, but did not increase yield per hectare. Meanwhile at greenhouse experiment, it showed that the use of liquid silica fertilizer reduced the number of rice stomata, but did not increase cuticle thickness and grain yield per plant. Silica application was not effective to alter drought in rice.<br /><br />Keywords: IPB 3S, silica fertilizer, soil water content, water use efficiency   <br /><br />


Author(s):  
Aline das Graças Souza ◽  
Oscar josé Smiderle

The Brazil nut (Bertholletia excelsa H.B.K.) is fast-growing, and can be used in reforestation. However, the use of the species in reforestation is still uncommon, mainly due to production costs, with substrate and fertiliser being the most-costly components. Based on the above, the aim of this study was to evaluate growth and quality in seedlings of the Brazil nut both with and without nutrient solution. The experimental design was completely randomised in a 2 x 10 factorial scheme: treatments with and without the addition of nutrient solution and 10 evaluations at intervals of 45 days. The variables to be analysed were height, stem diameter, dry shoot weight, root dry weight, total dry weight and the Dickson quality index. When analysing shoot dry weight (SDW), a gain of 85% was found from adding the nutrient solution, compared to the absence of nutrient solution, whereas for the variable, root-system dry weight, (RDW) the gain was 43%. The addition of nutrient solution is suggested for accelerating the growth and development of high-quality seedlings of Bertholletia excelsa for commercial use.


HortScience ◽  
2015 ◽  
Vol 50 (5) ◽  
pp. 688-693
Author(s):  
Mariateresa Cardarelli ◽  
Youssef Rouphael ◽  
Delia Muntean ◽  
Giuseppe Colla

The fertilizer nitrogen (N) inputs to some potted plants such as ornamental cabbage (Brassica oleracea L. var. acephala D.C.) are frequently higher than the actual demand. Optimization of N fertilization rate and selecting N-efficient cultivars are important approaches to increase the nitrogen use efficiency (NUE) and to reduce environmental pollution from nitrate leaching. The aim of this study was to assess the effect of increasing levels of nitrate (0.5, 2.5, 5, 10, or 20 mm of NO3−) in the nutrient solution on plant growth, quality, soil plant analysis development (SPAD) index, chlorophyll fluorescence, leaf pigments, mineral composition, and NUE in five ornamental cabbage cultivars (Coral Prince, Coral Queen, Glamour Red, Northern Lights Red, and White Peacock), grown in closed subirrigation system. ‘Glamour Red’ and ‘Northern Lights Red’ needed 3.3 and 2.9 mm of NO3− in the supplied nutrient solution, respectively, to produce 50% of predicted maximum shoot dry weight (SDW), whereas the vigorous cultivars Coral Prince, Coral Queen, and White Peacock needed 5.5, 4.7, and 4.3 mm of NO3−, respectively. Total leaf area (LA), SDW, SPAD index, N, Ca, and Mg concentrations increased linearly and quadratically in response to an increase of the nitrate concentration in the nutrient solution. Irrespective of cultivars, fertilizing above 10 mm NO3− produced high-quality plants (quality index of 5) and resulted in sufficiently high tissue concentrations of N, P, K, Ca, Mg, and Fe.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 982A-982
Author(s):  
Paolo Sambo ◽  
Franco Sannazzaro ◽  
Michael Evans

In order to evaluate alternative rooting media as a substitute to sphagnum peat in tomato transplant, fresh rice hulls (2 and 4 mm particle size), perlite, and peat were compared. In the same experiment, four nutrient solutions differing in electrical conductivity [(EC) 2.5, 3.5, 4.5 and 6.0 mS/cm], but not in nutrient content, were used. Seed of tomato (Lycopersium esculentum L.) `Brigade' (ASGROW) were sown in 55 × 35 × 6.5 cm polystyrene transplant trays containing 336 cells (15 mL) and filled with the root substrates. The trays were placed in a glass-glazed greenhouse. Trays were kept under intermittent mist for 6 days and then fertilized twice per week with 2.6 L per tray of solution. A split-plot design with three replications was used with nutrient solution serving as the main plot and root substrates serving as the subplots. During the growing cycle (once a week) and when plants were ready to transplant (16 cm tall, with an average of five to seven true leaves), stem diameter, hypocotyl length, plant height, number of true leaves, fresh shoot weight, and dry shoot weight were measured. Also at transplant, root fresh and dry weight and above- and below-ground biomass were analyzed to determine N, P, K, Ca, Mg, Fe, and Mn content. Plants grown in rice hulls were as marketable as those in peat, but showed a higher content in N, K, and Mn. Increased nutrient solution affected not only dry matter accumulation, but also stem diameter and plant hight, which were greater in plants grown with high EC.


Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 211 ◽  
Author(s):  
Al-Ashkar ◽  
Alderfasi ◽  
El-Hendawy ◽  
Al-Suhaibani ◽  
El-Kafafi ◽  
...  

Improving salt tolerance of genotypes requires a source of genetic variation and multiple accurate selection criteria for discriminating their salt tolerance. A combination of morpho-physiological and biochemical parameters and multivariate analysis was used to detect salt tolerance variation in 15 wheat lines developed by doubled haploid (DHL) technique. They were then compared with the salt-tolerant check cultivar Sakha 93. Salinity stress was investigated at three salinity levels (0, 100, and 200 mM NaCl) for 25 days. Considerable genetic variation was observed for all traits, as was high heritability (>60%) and genetic gain (>20%). Principal component analysis indicated the ability of nine traits (root number, root length, root dry weight, shoot length, shoot dry weight, specific root length, relative water content, membrane stability index, and catalase) to identify differences in salinity tolerance among lines. Three traits (shoot length, shoot dry weight, and catalase) were indicative of salt-tolerance, indicating their importance in improving and evaluating salt tolerant genotypes for breeding programs. The salinity tolerance membership index based on these three traits classified one new line (DHL21) and the check cultivar (Sakha 93) as highly salt-tolerant, DHL25, DHL26, DHL2, DHL11, and DHL5 as tolerant, and DHL23 and DHL12 as intermediate. Discriminant function analysis and MANOVA suggested differences among the five groups of tolerance. Among the donor genotypes, Sakha 93 remained the donor of choice for improving salinity tolerance during the seedling stage. The tolerated lines (DHL21, DHL25, DHL26, DHL2, DHL11, and DHL5) could be also recommended as useful and novel genetic resources for improving salinity tolerance of wheat in breeding programs.


Sign in / Sign up

Export Citation Format

Share Document