scholarly journals Flowering Induction in Camellia chrysantha, a Golden Camellia Species, with Paclobutrazol and Urea

HortScience ◽  
2017 ◽  
Vol 52 (11) ◽  
pp. 1537-1543
Author(s):  
Xiao-Juan Wei ◽  
Jinlin Ma ◽  
Kai-Xiang Li ◽  
Xiao-Jing Liang ◽  
Haiying Liang

The flowers of Camellia chrysantha, commonly named as golden camellia, are treasured for their unique yellow color and are popularly used for tea. Compared with common camellia flowers that are either red, purple, pink, or white, golden camellia flowers are rare and are in high market demand. Our study was aimed to induce flowering in juvenile C. chrysantha grafted plants with urea and paclobutrazol (PBZ), a growth retardant. Generally, it takes 6–8 years for C. chrysantha seedlings and 5–6 years for grafted plants to set flower buds. With a 4 × 4 factorial design, four dosages of urea (1, 3, 5, or 8 g/plant) and four concentrations of PBZ (50, 150, 350, and 750 ppm) were tested on 4-year-old C. chrysantha grafted plants. Significant interaction between urea and PBZ was observed, and nine of the 16 combinations produced significantly more flower buds than the control, although not all flower buds could open because of abscission. High concentrations of PBZ and high dosages of urea were generally associated with severe defoliation and slow growth of basal stem diameter. When taking bud abscission into account, combinations of 150 ppm PBZ with 1 g urea and 350 ppm PBZ with 3 g urea resulted in significant flowering in juvenile C. chrysantha grafted plants without negative effects on vegetative growth and flower bud size and severe defoliation. This is the first report on flowering induction in a golden camellia species using juvenile plants. Our results suggest that application of optimized PBZ and urea doses can be a potential means for manipulation of early flowering in golden camellia species.

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 448A-448
Author(s):  
Johnny Carter ◽  
Seema Dhir

A plant regeneration protocol has been successfully developed to mass propagate daylilies. Experiments were conducted to determine source (BA, KN, and ZT) and concentration (0, 1.0, 2.0, and 3.0 mg/L) of cytokinins and sugars (glucose, surcose, and maltose) to be used in the medium. Studies were also conducted to determine the influence of flower bud size (5, 10, 15, and 20 mm) as explant source. Based on results from these studies a protocol for propagating daylilies was developed. The procedure involved using filament explants from daylily flower buds ranging in sizes from 5 to 10 mm. The filaments when cultured on MS+BAP (3.0 mg/L)+ IAA (0.5 mg/L) medium,formed globular somatic embryos in 4 weeks. Complete plants were regenerated within a period of 6 to 7 months. Upon acclimatization, 100% of the tissue culture generated raised plants survived under greenhouse conditions.


HortScience ◽  
2021 ◽  
pp. 1-5
Author(s):  
Xiaojuan Wei ◽  
Siyu Wu ◽  
Xiaojing Liang ◽  
Kun Wang ◽  
Yuejuan Li ◽  
...  

Golden camellia flowers are treasured for their unique yellow color and bioactive chemical compounds. Because of its high market demand, there is strong interest in inducing early flowering in golden camellias for earlier harvest. Previously, we have successfully induced flowering in Camelia chrysantha (Hu) Tuyama juvenile grafted plants and seedlings with paclobutrazol (PBZ). During this study, we investigated the efficacy of PBZ on C. tamdaoensis juvenile rooted cuttings. C. tamdaoensis is a yellow-flowering camellia species that is native to Vietnam and valued by the local population. It was found that applications of 100 and 200 ppm PBZ generated an average of 13 and 30 flowers per 5-year-old plant, respectively. None of the control plants flowered. The average flower diameter was 17.2 cm for 100-ppm-induced flowers and 26.0 cm for 200-ppm-induced flowers. The dynamics of various phytohormones (indoleacetic acid, abscisic acid, salicylic acid, and jasmonic acid) were altered by PBZ treatment. It is suggested that low indoleacetic acid, high abscisic acid, and jasmonic acid and a gradual increase in salicylic acid benefit floral initiation of golden camellias. The study provided the first insight regarding the action mechanism of PBZ for the initiation of camellia flowering.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 447d-447
Author(s):  
Meriam Karlsson ◽  
Jeffrey Werner

Nine-week-old plants of Cyclamen persicum `Miracle Salmon' were transplanted into 10-cm pots and placed in growth chambers at 8, 12, 16, 20, or 24 °C. The irradiance was 10 mol/day per m2 during a 16-h day length. After 8 weeks, the temperature was changed to 16 °C for all plants. Expanded leaves (1 cm or larger) were counted at weekly intervals for each plant. The rate of leaf unfolding increased with temperature to 20 °C. The fastest rate at 20 °C was 0.34 ± 0.05 leaf/day. Flower buds were visible 55 ± 7 days from start of temperature treatments (118 days from seeding) for the plants grown at 12, 16, or 20 °C. Flower buds appeared 60 ± 6.9 days from initiation of treatments for plants grown at 24 °C and 93 ± 8.9 days for cyclamens grown at 8 °C. Although there was no significant difference in rate of flower bud appearance for cyclamens grown at 12, 16, or 20 °C, the number of leaves, flowers, and flower buds varied significantly among all temperature treatments. Leaf number at flowering increased from 38 ± 4.7 for plants at 12 °C to 77 ± 8.3 at 24 °C. Flowers and flower buds increased from 18 ± 2.9 to 52 ± 11.0 as temperature increased from 12 to 24 °C. Plants grown at 8 °C had on average 6 ± 2 visible flower buds, but no open flowers at termination of the study (128 days from start of treatments).


2021 ◽  
Vol 22 (8) ◽  
pp. 3932
Author(s):  
Jing Cao ◽  
Qijiang Jin ◽  
Jiaying Kuang ◽  
Yanjie Wang ◽  
Yingchun Xu

The lotus produces flower buds at each node, yet most of them are aborted because of unfavorable environmental changes and the mechanism remains unclear. In this work, we proposed a potential novel pathway for ABA-mediated flower timing control in the lotus, which was explored by combining molecular, genetic, transcriptomic, biochemical, and pharmacologic approaches. We found that the aborting flower buds experienced extensive programmed cell death (PCD). The hormonal changes between the normal and aborting flower buds were dominated by abscisic acid (ABA). Seedlings treated with increasing concentrations of ABA exhibited a differential alleviating effect on flower bud abortion, with a maximal response at 80 μM. Transcriptome analysis further confirmed the changes of ABA content and the occurrence of PCD, and indicated the importance of PCD-related SNF1-related protein kinase 1 (NnSnRK1). The NnSnRK1-silenced lotus seedlings showed stronger flowering ability, with their flower:leaf ratio increased by 40%. When seedlings were treated with ABA, the expression level and protein kinase activity of NnSnRK1 significantly decreased. The phenotype of NnSnRK1-silenced seedlings could also be enhanced by ABA treatment and reversed by tungstate treatment. These results suggested that the decline of ABA content in lotus flower buds released its repression of NnSnRK1, which then initiated flower bud abortion.


1966 ◽  
Vol 46 (2) ◽  
pp. 141-149 ◽  
Author(s):  
Walter J. Kender ◽  
Franklin P. Eggert

A field experiment using various soil management practices showed that the most effective means to increase blueberry plant spread was through the use of a surface mulch. Peat and sawdust were of equal suitability as a mulching material influencing vegetative growth, although sawdust did result in a reduction in the number of flower buds produced when compared with peat. Mulching was associated with a higher soil moisture content than non-mulched plots.Blueberry plants growing in nitrogen-treated plots had an increased flower bud number and rhizome growth in contrast with those growing in unfertilized plots. Nitrogen fertilization was of particular benefit when applied in association with surface organic mulches.Plants growing in an undisturbed soil were more vigorous than in a homogenized or tilled soil. Sawdust was found to be detrimental to the growth of lowbush blueberry plants when incorporated into a homogenized soil.


2018 ◽  
Vol 30 (12) ◽  
pp. 1770 ◽  
Author(s):  
W. Chankeaw ◽  
Y. Z. Guo ◽  
R. Båge ◽  
A. Svensson ◽  
G. Andersson ◽  
...  

Elevated non-esterified fatty acids (NEFAs) are associated with negative effects on bovine theca, granulosa and oviductal cells but the effects of NEFAs on bovine endometrial epithelial cells (bEECs) are not as well documented. The objective of this study was to define the effects of NEFAs on bEECs. Postprimary bEECs were treated with 150, 300 or 500 µM of either palmitic acid (PA), stearic acid (SA) or oleic acid (OA) or a mixture of NEFAs (150 µM of each FA) or 0.5% final concentration of vehicle ethanol (control). Viability and proliferation of bEECs exposed to 150 µM of each NEFA or a mixture of NEFAs were unaffected. Increased lipid accumulation was found in all treated groups (P < 0.01). In cells exposed to 500 µM of each NEFA and 300 µM PA decreased cell viability (P < 0.001), proliferation (P < 0.05) and increased apoptosis (P < 0.05) were observed. Treatment with 500 µM OA, PA and SA had the strongest effects on cell viability, proliferation and apoptosis (P < 0.05). Treatment with PA and OA increased interleukin-6 (IL-6) concentrations (P < 0.05), whereas only the highest concentration of PA, OA and SA stimulated IL-8 production (P < 0.05). These results suggest that high concentrations of NEFAs may impair endometrial function with more or less pronounced effects depending on the type of NEFA and time of exposure.


2013 ◽  
Vol 36 (1-2) ◽  
pp. 83-94 ◽  
Author(s):  
Franciszka Jaumień

The growth of trees sprayed in spring with chlormequat is weaker, and their elongation growth ends 2 - 3 weeks earlier than that of unsprayed trees. Trees with growth inhibited by chlormequat set flower buds on the spurs and in the subapical part of long shoots. The course of flower bud differentiation starts in the second half of July and is similar to that in the apple tree.


1988 ◽  
Vol 6 (4) ◽  
pp. 122-124
Author(s):  
Kenneth C. Sanderson ◽  
Willis C. Martin ◽  
R. Bruce Reed

Spray applications of 4.2% Off-Shoot-0 (a mixture of methyl ester of fatty acids C6, C8, C10, and C12) effectively destroyed flower bud scales and flower parts on the azalea (Rhododendron simsii Plachon.) cultivars ‘Prize’ and ‘Kingfisher’. The addition of ethephon to Off-Shoot-0 did not increase the destruction of bud scales and flower parts. Dikegulac-sodium and oxathiin alone or in combination with ethephon did not significantly destroy scales or flower parts. Destructive chemical pinching agents such as dimethyl dodecylamine and n-undecanol usually were as effective as Off-Shoot-0 in killing bud scales but not flower parts. Cultivars differed slightly in their response to chemicals designed to destroy unwanted flower buds.


2016 ◽  
Vol 6 (1) ◽  
pp. 33
Author(s):  
ROSMAINA ROSMAINA ◽  
ZULFAHMI ZULFAHMI ◽  
PROBO SUTEJO ◽  
ULFIATUN ULFIATUN ◽  
MAISUPRATINA MAISUPRATINA

One of the problem of Eurycoma longifolia Jack propagation was low germination percentage due to recalcitrant seeds and slow growth of seedling from cutting propagation. To overcome this problem is required propagation of Eurycoma longifolia via in vitro culture. The objective of this research was to know the effect of Auxin (2,4-D and NAA) and Cytokines (BAP and Kinetin)  on Eurycoma longifolia callus induction via leaf and petiole explants. In this study, we used plant growth regulator of 2,4 D, NAA, BAP and Kinetin in several levels.  The observed variables were appearing callus time, callus color and callus texture. The results of this study showed that MS medium supplemented with 1 ppm NAA+ 1 ppm BAP was able to induce callus formation in leaf explant for 6 months after culture. While MS medium supplemented with 1 ppm 2,4-D, 1 ppm BAP, combination of 2,4-D and Kinetin and combination of 2,4-D and BAP can induce callus formation from petiole. All the callus formation has yellow color and yellow brown color. The petiole explant that is grown in MS medium supplemented with 1 ppm BAP induced of callus in short time (18 days after culture).


Sign in / Sign up

Export Citation Format

Share Document