scholarly journals Evaluation of Salt Tolerance at Germination Stage in Cowpea [Vigna unguiculata (L.) Walp]

HortScience ◽  
2017 ◽  
Vol 52 (9) ◽  
pp. 1168-1176 ◽  
Author(s):  
Waltram Second Ravelombola ◽  
Ainong Shi ◽  
Yuejin Weng ◽  
John Clark ◽  
Dennis Motes ◽  
...  

Cowpea is a leguminous and versatile crop which provides nutritional food for human consumption. However, salinity unfavorably reduces cowpea seed germination, thus significantly decreasing cowpea production. Little has been done for evaluating and developing salt-tolerant cowpea genotypes at germination stage. The objectives of this research were to evaluate the response of cowpea genotypes to salinity stress through seed germination rate and to select salt-tolerant cowpea genotypes. The seed germination rates under nonsalt condition and salinity stress (150 mm NaCl) were evaluated in 151 cowpea genotypes. Four parameters, absolute decrease (AD), the inhibition index (II), the relative salt tolerance (RST), and the salt tolerance index (STI) were used to measure salt tolerance in cowpea. The results showed that there were significant differences among the 151 cowpea genotypes for all parameters (P values <0.0001). The AD in germination rate was 5.8% to 94.2%; the II varied from 7.7% to 100%; the RST ranged from 0 to 0.92; and STI varied from 0 to 0.92. A high broad sense heritability (H2) was observed for all four parameters. High correlation coefficients (r) were estimated among the four parameters. PI582422, 09–529, PI293584, and PI582570 were highly salt tolerant at germination stage. In addition, genotypes from the Caribbean and Southern Asia exhibited better tolerance to salinity, whereas those from Europe and North America were the most salt-susceptible.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Md. Mia Mukul ◽  
Sheikh Shorif Uddin Ahmed ◽  
Nargis Akter ◽  
Md. Golam Mostofa ◽  
Md. Sohanur Rahman ◽  
...  

Salinity is a serious abiotic stress to Jute and other crop cultivation at saline regions in the world. No salt tolerant Tossa Jute (Corchorus olitorius L.) variety was developed in Bangladesh. Hence, six Tossa Jute accessions were investigated at germination stage against six concentration levels (0.00 or d.H2O, 8.0, 10.0, 12.0, 14.0 and 16.0 dS m-1) of salt (NaCl) using RCB design at Bangladesh Jute Research Institute (BJRI) during March-July, 2020. Jute seeds collected from Gene Bank of BJRI were allowed to germinate under laboratory condition. Seed germination rate was adversely affected as well as delay in germination was prolonged with increasing the salt concentration. In control, seeds were germinated up to 14.0 dS m-1 salt solution. Among six genotypes, Acc. 1141 and Acc. 3801 showed the highest germination rate (86.67 %); Acc. 3801 gave maximum root length (17.0 mm), dry biomass (6.37 mg); and Acc. 1089 showed higher shoot length (10.0 mm), fresh weight (43.93 mg) and salt tolerance index (60.69 %) under 14.0 dS m-1 level. Higher relative salt harm rate (7.14 %) was observed in both Acc. 1141 and Acc. 3801 under 14.0 dS m-1 salinity indicating highly tolerance to salinity. Acc. 3801 and Acc. 1141 were found good for germination under salt stresses; Acc. 3801, Acc. 1089 for fiber yield and salt tolerance; Acc. 3801 and Acc. 1407 for higher fiber yield. Acc. 3801 was found good for salt tolerance and fiber yield content. The genotypes with good desirable characters would be used as breeding materials to develop high yielding salt tolerant Tossa Jute variety.


Author(s):  
Eliane Kinsou ◽  
David Montcho ◽  
Séraphin Ahissou Zanklan ◽  
Julien Koffi Kpinkoun ◽  
Françoise Assogba Komlan ◽  
...  

Aims: In this research study, salt resistance level of seven tomato cultivars grown in Benin, namely Akikon, Tounvi; F1 Mongal, Petomech, Padma, TLCV 15 and Thorgal was evaluated at the germination stage. Study Design: The experiment was laid out as a completely randomized design with four replications. Place and Duration of Study: The experiment was carried out in the Laboratory of Plant Physiology and Abiotic Stresses Study of University of Abomey-Calavi, Republic of Benin from May to June, 2017. Methodology: Seeds were submitted to treatment with four NaCl concentrations (0; 30; 60 and 90 mM NaCl) in Petri dishes. Seed germination was checked every day during ten days incubation period. Four replicates of 40 seeds each were used. Results: NaCl reduced seed germination rate in all cultivars from day 2 to day 10 and the germination index proportionately to NaCl concentration. At the end of the 10 days, salt stress reduced the final germination percentages with a significant difference among cultivars: cultivars F1 Mongal followed by Akikon, Thorgal, TLCV15 and Tounvi were less affected in comparison with the two other cultivars. Salt Tolerance Index was significantly variable according to the cultivar with the highest values for cultivars F1 Mongal (1.086), Akikon (1.028), TLCV15 (1.005) and Tounvi (0.989) and the weakest value for cultivar Petomech (0.436). Conclusion: NaCl stress delayed seed germination and reduced the rate of final germination. Salt Tolerance Index was variable among the seven cultivars. Based on this criterion, cultivars F1 Mongal, Akikon, TLCV15 and Tounvi were the most salt-resistant whereas Petomech was the most salt-sensitive at germination stage.


2001 ◽  
Vol 49 (2) ◽  
pp. 185 ◽  
Author(s):  
M. Ajmal Khan ◽  
Bilquees Gul ◽  
Darrell J. Weber

Suaeda moquinii (Torrey) Greene (desert blite), a succulent shrub in the family Chenopodiaceae, is widely distributed in salt marshes of the western United States. Suaeda moquinii produces dimorphic seeds (soft brown and hard black). Both types of seeds were collected from a salt marsh in Faust, Utah. Experiments were conducted to determine the seed germination responses of the black and brown seeds to salinity and temperature. Brown seeds were found to be one of the most salt tolerant at the germination stage when compared to other halophytes. Brown seeds germinated (30%) at 1000 mM NaCl, but only a few black seeds germinated (8%) at 600 mM NaCl. Seed germination occurred in most saline treatments at the lowest thermoperiod (5–15˚C) tested. In some salinity treatments (600, 800, 1000 mM), further increases in temperature resulted in progressively decreased seed germination. Brown seeds germinated better and had a higher germination rate (germination velocity) than black seeds at all thermoperiods. The highest rate of germination of black seeds occurred at the lowest thermoperiod (5–15˚C). Recovery of germination for black seeds when transferred to distilled water after being in various salinity treatments for 20 days was nearly complete (82–100%) at the lowest thermoperiod (5–15˚C) but decreased with increase in the temperature. Brown seeds recovered substantially (59–97%) from salinity at all thermoperiods. Regression analyses indicated significant differences between the germination recovery of the black and brown seeds.


2005 ◽  
Vol 45 (4) ◽  
pp. 391 ◽  
Author(s):  
B. Zhang ◽  
B. C. Jacobs ◽  
M. O'Donnell ◽  
J. Guo

Salt tolerances of 3 cultivars, Menemen puccinellia (Puccinellia ciliata Bor), Tyrrell and Dundas [tall wheatgrass, Thinopyrum ponticum (Podp.) Z. W. Liu and R. R. C. Wang], were compared with respect to their seed germination, adaptive responses to salt and waterlogging, seedling emergence, plant growth, shoot osmolality and mineral contents in a series of salt-stress experiments. An inverse normal distribution provided good fits for the time to seed germination. Under NaCl stress, 50% of the control (distilled water) seed germination rates of Menemen, Tyrrell and Dundas were achieved in 178.8, 300.9 and 296.8 mmol/L NaCl, respectively. Fifty percent of the control seedling emergence rates of these 3 cultivars were in 92.7, 107.2 and 113.5 mmol/L NaCl, respectively. The seed germination rates of these 3 cultivars under both salt and waterlogging stress were far lower than those germinated only under salt stress at the same salt level. Seed pretreatment by soaking seed in NaCl solutions greatly increased the seed germination rate under salt stress for Menemen and under both salt stress and waterlogging for Dundas. Tyrrell and Dundas were very similar in their tolerance to salt stress, and were significantly (P<0.05) more salt tolerant than Menemen in terms of seed germination and seedling emergence rate. Both shoot height and dry matter of these 3 cultivars were not statistically different among all salt stress levels during the seedling elongation period, indicating that the established plants of these 3 cultivars were very salt tolerant. The salt tolerance mechanisms of these 3 cultivars are possibly related to their abilities to maintain high osmolality in shoots by regulating high sodium and potassium contents, and reducing calcium deficiency under salt stress.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rakesh Kaundal ◽  
Naveen Duhan ◽  
Biswa R. Acharya ◽  
Manju V. Pudussery ◽  
Jorge F. S. Ferreira ◽  
...  

AbstractAlfalfa is an important forage crop that is moderately tolerant to salinity; however, little is known about its salt-tolerance mechanisms. We studied root and leaf transcriptomes of a salt-tolerant (G03) and a salt-sensitive (G09) genotype, irrigated with waters of low and high salinities. RNA sequencing led to 1.73 billion high-quality reads that were assembled into 418,480 unigenes; 35% of which were assigned to 57 Gene Ontology annotations. The unigenes were assigned to pathway databases for understanding high-level functions. The comparison of two genotypes suggested that the low salt tolerance index for transpiration rate and stomatal conductance of G03 compared to G09 may be due to its reduced salt uptake under salinity. The differences in shoot biomass between the salt-tolerant and salt-sensitive lines were explained by their differential expressions of genes regulating shoot number. Differentially expressed genes involved in hormone-, calcium-, and redox-signaling, showed treatment- and genotype-specific differences and led to the identification of various candidate genes involved in salinity stress, which can be investigated further to improve salinity tolerance in alfalfa. Validation of RNA-seq results using qRT-PCR displayed a high level of consistency between the two experiments. This study provides valuable insight into the molecular mechanisms regulating salt tolerance in alfalfa.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 97
Author(s):  
Juyun Zheng ◽  
Zeliang Zhang ◽  
Zhaolong Gong ◽  
Yajun Liang ◽  
Zhiwei Sang ◽  
...  

Soil salinization is the main abiotic stress factor affecting agricultural production worldwide, and salt stress has a significant impact on plant growth and development. Cotton is one of the most salt-tolerant crops. Therefore, the selection and utilization of salt-tolerant germplasm resources and the excavation of salt resistance genes play important roles in improving cotton production in saline–alkali soils. In this study, we analysed the population structure and genetic diversity of a total 149 cotton plant materials including 137 elite Gossypium hirsutum cultivar accessions collected from China and 12 elite Gossypium hirsutum cultivar accessions collected from around the world. Illumina Cotton SNP 70 K was used to obtain genome-wide single-nucleotide polymorphism (SNP) data for 149 elite Gossypium hirsutum cultivar accessions, and 18,430 highly consistent SNP loci were obtained by filtering. It was assessed by using PCA principal component analysis so that the 149 elite Gossypium hirsutum cultivar accessions could be divided into two subgroups, including subgroup 1 with 78 materials and subgroup 2 with 71 materials. Using the obtained SNP and other marker genotype test results, under salt stress, the salt tolerance traits 3d Germination potential, 3d Radicle length drop rate, 7d Germination rate, 7d Radicle length drop rate, 7d Germination weight, 3d Radicle length, 7d Radicle length, Relative Germination potential, Relative Germination rate, 7d Radicle weight drop rate, Salt tolerance index 3d Germination potential index, 3d Radicle length index, 7d Radicle length index, 7d Radicle weight index and 7d Germination rate index were evaluated by GWAS (genome-wide association analysis). A total of 27 SNP markers closely related to the salt tolerance traits and 15 SNP markers closely related to the salt tolerance index were detected. At the SNP locus associated with phenotyping, Gh_D01G0943, Gh_D01G0945, Gh_A01G0906, Gh_A01G0908, Gh_D08G1308 and Gh_D08G1309 related to plant salt tolerance were detected, and they were found to be involved in intracellular transport, sucrose synthesis, osmotic pressure balance, transmembrane transport, N-glycosylation, auxin response and cell amplification. This study provides a theoretical basis for the selection and breeding of salt-tolerant upland cotton varieties.


2021 ◽  
Author(s):  
Zeliang Zhang ◽  
Juyun Zheng ◽  
Zhaolong Gong ◽  
Yajun Liang ◽  
Zhiwei Sang ◽  
...  

Soil salinization is the main abiotic stress factor affecting agricultural production worldwide, and salt stress has a significant impact on plant growth and development. Cotton is one of the most salt-tolerant crops. Its salt tolerance varies greatly depending on the variety, growth stage, organs, and soil salt types. Therefore, the selection and utilization of excellent salt-tolerant germplasm resources and the excavation of excellent salt-tolerant salt and salt resistance genes play important roles in improving cotton production in saline-alkali soils. In this study, we analysed the population structure and genetic diversity of 144 elite Gossypium hirsutum cultivar accessions collected from around the world, and especially from China. Illumina Cotton SNP 70K was used to obtain genome-wide single-nucleotide polymorphism (SNP) data for 149 experimental materials, and 18,432 highly consistent SNP loci were obtained by filtering. PCA (principal component analysis)indicated that 149 upland cotton materials could be divided into 2 subgroups, including subgroup 1 with 78 materials and subgroup 2 with 71 materials. Using the obtained SNP and other marker genotype test results, under salt stress, the salt tolerance traits 3d_Germination_potential, 3d_Bud_length_drop_rate, 7d_Germination_rate, 7d_Bud_length_drop_rate, 7d_Germination_weight, 3d_Bud_length, 7d_Bud_length, relative_germination_potential, Relative_germination_rate, 7d_Bud_weight_drop_rate, Salt tolerance index 3d_Germination_potential_index, 3d_Bud_length_index, 7d_Bud_length_index, 7d_Bud_weight_index, and 7d_Germination_rate_index were evaluated by genome association analysis. A total of 27 SNP markers closely related to salt tolerance traits and 15 SNP markers closely related to salt tolerance index were detected. At the SNP locus associated with the traits of the bud length decline rate at 7 days, alleles Gh_A01G0034 and Gh_D01G0028 related to plant salt tolerance were detected, and they are related to intracellular transport, membrane microtubule formation and actin network. This study provides a theoretical basis for the selection and breeding of salt-tolerant upland cotton varieties.


HortScience ◽  
2019 ◽  
Vol 54 (1) ◽  
pp. 38-44 ◽  
Author(s):  
Adam Bolton ◽  
Philipp Simon

Global carrot production is limited by the crop’s high susceptibility to salinity stress. Not much public research has been conducted to screen for genetic salinity stress tolerance in carrot, and few resources exist to aid plant breeders in improving salinity tolerance in carrot. The objectives of this study were to evaluate the response of diverse carrot germplasm to salinity stress, identify salt-tolerant carrot germplasm that may be used by breeders, and define appropriate screening criteria for assessing salt tolerance in germinating carrot seed. Carrot plant introductions (PIs) (n = 273) from the U.S. Department of Agriculture (USDA) National Plant Germplasm System representing 41 different countries, inbred lines from the USDA Agricultural Research Service (n = 16), and widely grown commercial hybrids (n = 5) were screened for salinity tolerance under salinity stress and nonstress conditions (150 and 0 mm NaCl, respectively) by measuring the absolute decrease (AD) in the percent of germination, inhibition index (II), relative salt tolerance (RST), and salt tolerance index (STI) of germinating seeds. All salt tolerance measurements differed significantly between accessions; AD ranged from −4.2% to 93.0%; II ranged from −8.0% to 100.0%; RST ranged from 0.0 to 1.08; and STI ranged from 0.0 to 1.38. Broad sense heritability calculations for these measurements were 0.87 or more, indicating a strong genetic contribution to the variation observed. Six accessions identified as salt-tolerant or salt-susceptible were evaluated in a subsequent experiment conducted at salt concentrations of 0, 50, 100, 150, 200, and 250 mm NaCl. Variations between mean AD, II, RST, and STI of tolerant and susceptible lines were greatest at 150 mm NaCl, validating the use of 150 mm NaCl concentrations during salt tolerance screening of carrot seed. Wild carrot accessions displayed little tolerance, and PI 256066, PI 652253, PI 652402, and PI 652405 from Turkey were most salt-tolerant.


HortScience ◽  
2012 ◽  
Vol 47 (4) ◽  
pp. 527-530 ◽  
Author(s):  
Qi Zhang ◽  
Kevin Rue ◽  
Sheng Wang

Salinity tolerance of five buffalograss [Buchloe dactyloides (Nutt.) Englem.] cultivars (Texoka, Cody, Bison, Sharp's Improved II, and Bowie) and three blue grama [Bouteloua gracilis (Willd. ex Kunth) Lag. ex Griffiths] ecotypes (‘Lovington’, ‘Hachita’, and ‘Bad River’) was determined during in vitro seed germination and vegetative growth in a hydroponic system. Seeds were germinated on 0.6% agar medium supplemented with NaCl at 0, 5, 10, 15, and 20 g·L−1. Salinity reduced the final germination rate (FGR) and daily germination rate (DGR). Similarly, shoot dry weight (SDW), longest root length (LRL), and percentage of green tissue (PGT) of mature grasses declined with increasing salinity levels (NaCl = 0, 2.5, 5, 7.5, and 10 g·L−1). However, root dry weight (RDW) was not significantly affected by salinity. Blue grama exhibited a lower reduction in FGR and DGR than buffalograss at salinity levels lower than 10 g·L−1. Germination of all buffalograss cultivars and ‘Hachita’ blue grama was inhibited at salinity levels of 15 and 20 g·L−1 NaCl. However, buffalograss was more salt-tolerant than blue grama at the vegetative growth stage. Variations of salinity tolerance were observed within buffalograss cultivars and blue grama ecotypes, especially during the seed germination stage. Overall, buffalograss appeared to be salt-sensitive during germination but moderately salt-tolerant at the mature stage. However, blue grama was more salt-tolerant at the germination stage than the mature stage. Noticeable differences in salinity tolerance were observed between different germplasms. Therefore, salt tolerance of buffalograss and blue grama may be improved through turfgrass breeding efforts.


2022 ◽  
Vol 81 (1) ◽  
Author(s):  
Iskender Tiryaki ◽  
Nuray Isidogru

The objectives of the present study were to determine salt tolerance levels of 12 different common vetch (Vicia sativa L.) cultivars at germination stage in the presence of 250 mM NaCl and to reveal genetic relationships based on gene targeted functional markers (GTFMs) associated with salt tolerance. The results revealed the presence of a significant genetic variation among the cultivars although s alt stress significantly reduced all germination parameters tested. The cultivar Ozveren was the most salt tolerant with 20.1% reduction in final germination percentage compared to control seeds while cultivars Alınoglu, Ayaz and Bakir did not germinate. The maximum delays in germination rate (G50 = 3.78 days) and synchrony (G10-90 = 3.45 days) were obtained from the cultivars Urkmez and Ozveren, respectively. The GTFMs provided a total of 53.1% polymorphism. The primers of MtSOS2 gene gave the highest numbers of alleles per primer pair while the highest polymorphism rate (77.8%) was obtained from the MtP5CS gene. The first three components of principal component analysis explained 57.63% of total variation. This study concluded that the cultivars determined to be salt tolerant and sensitive at germination stage distributed into three main clades determined by UPGMA analysis while the GTFMs associated with salt tolerance successfully determined the genetic relationships of common vetch cultivars.


Sign in / Sign up

Export Citation Format

Share Document