scholarly journals The Effect of Temperature on Plant Growth in Four Gerbera hybrida Cultivars

HortScience ◽  
2019 ◽  
Vol 54 (7) ◽  
pp. 1164-1167 ◽  
Author(s):  
Fan Li ◽  
Shenchong Li ◽  
Qinli Shan

Temperature is one of the main factors that affects the growth pattern of Gerbera hybrida, which shows vast variation in morphology and stress adaptation among cultivars. However, little is known about temperature responses of plant growth among different cultivars. In this study, four cultivars were planted in different growth temperatures to investigate the effect of temperature on plant growth of Gerbera hybrida during their vegetative growth. Results showed that the optimum growth temperature of the four cultivars was 20 °C, of which plant height, root length, biomass accumulation, leaf area, and photosynthetic rate were enhanced significantly. Different cultivars showed diverse temperature adaptation ranges, which were related with their genetic background, and the temperature adaptability of cultivar Autumn was the best among the four cultivars. Temperature also had significant effects on photosynthetic rate, which was the main factor shaping plant growth. Our research provides the basic guidance for the growth temperature control in the cultivation of Gerbera hybrida.

2014 ◽  
Vol 989-994 ◽  
pp. 747-750 ◽  
Author(s):  
Chun Ying Yuan ◽  
Shuo Yang ◽  
Yue Wang ◽  
Qing Man Cui

Under the laboratory conditions, the effect of temperature (10, 15, 20, 25, 30°C) on growth and biochemical composition of Sargassum muticum was studied, the results showed that: the optimum growth temperature of S.muticum was 15 °C in the range of 10-30 °C; the contents of chlorophyll a, carotenoid, soluble protein, soluble sugar and brown algae polyphenols were the highest at the temperature of 25 °C, it was speculated that these components appeared compensatory increase duo to the high temperature stress. The contents of these biochemical components were the lowest at 30 °C.


2020 ◽  
Vol 71 (7) ◽  
pp. 2339-2350 ◽  
Author(s):  
Haruki Kimura ◽  
Mimi Hashimoto-Sugimoto ◽  
Koh Iba ◽  
Ichiro Terashima ◽  
Wataru Yamori

Abstract It has been reported that stomatal conductance often limits the steady-state photosynthetic rate. On the other hand, the stomatal limitation of photosynthesis in fluctuating light remains largely unknown, although in nature light fluctuates due to changes in sun position, cloud cover, and the overshadowing canopy. In this study, we analysed three mutant lines of Arabidopsis with increased stomatal conductance to examine to what extent stomatal opening limits photosynthesis in fluctuating light. The slac1 (slow anion channel-associated 1) and ost1 (open stomata 1) mutants with stay-open stomata, and the PATROL1 (proton ATPase translocation control 1) overexpression line with faster stomatal opening responses exhibited higher photosynthetic rates and plant growth in fluctuating light than the wild-type, whereas these four lines showed similar photosynthetic rates and plant growth in constant light. The slac1 and ost1 mutants tended to keep their stomata open in fluctuating light, resulting in lower water-use efficiency (WUE) than the wild-type. However, the PATROL1 overexpression line closed stomata when needed and opened stomata immediately upon irradiation, resulting in similar WUE to the wild-type. The present study clearly shows that there is room to optimize stomatal responses, leading to greater photosynthesis and biomass accumulation in fluctuating light in nature.


1943 ◽  
Vol 13 (2) ◽  
pp. 136-145 ◽  
Author(s):  
G. J. E. Hunter

The effect of temperature on the growth in milk of several strains of Str. cremoris and their appropriate phages has been investigated. The phage races show a wider diversity of reaction to temperature conditions than do the homologous organisms. They frequently have different optimum growth temperatures quite distinct from the optimum growth temperature of the substrate organisms. Some races fail to multiply at 37° C.The implication of the results in cheese-making practice is discussed.


1977 ◽  
Vol 23 (7) ◽  
pp. 898-902 ◽  
Author(s):  
L. van den Berg

Studies with a methanogenic culture enriched for use of acetic acid showed that this culture had an optimum growth temperature of 35 °C, with only small differences for other temperatures between 30 and 40 °C. The optimum temperature was the same when determined on the basis of biomass production rate during the exponential (log) phase of growth (0.08–0.09 day−1, at 35 °C), amount of biomass present at the end of the log phase (100 mg/ℓ), activity of the biomass (rate of conversion in millimoles per day per milligram (dry wt.) biomass present, 0.08 at end of log phase), or biomass yield (mg (dry wt.) biomass produced per millimole acetic acid converted, 1.0–1.1). Temperatures outside the range 30 to 40 °C caused marked reductions in the above parameters. The maximum temperature for growth was 42–44 °C; the minimum, below 15 °C, the lowest temperature studied. Acetic acid conversion to methane was 0.8–1.0 mol/mol, and was independent of temperature.


2021 ◽  
Vol 9 (8) ◽  
pp. 1647
Author(s):  
Gui-E Li ◽  
Wei-Liang Kong ◽  
Xiao-Qin Wu ◽  
Shi-Bo Ma

Phytase plays an important role in crop seed germination and plant growth. In order to fully understand the plant growth-promoting mechanism by Rahnella aquatilis JZ-GX1,the effect of this strain on germination of maize seeds was determined in vitro, and the colonization of maize root by R. aquatilis JZ-GX1 was observed by scanning electron microscope. Different inoculum concentrations and Phytate-related soil properties were applied to investigate the effect of R. aquatilis JZ-GX1 on the growth of maize seedlings. The results showed that R. aquatilis JZ-GX1 could effectively secrete indole acetic acid and had significantly promoted seed germination and root length of maize. A large number of R. aquatilis JZ-GX1 cells colonized on the root surface, root hair and the root interior of maize. When the inoculation concentration was 107 cfu/mL and the insoluble organophosphorus compound phytate existed in the soil, the net photosynthetic rate, chlorophyll content, phytase activity secreted by roots, total phosphorus concentration and biomass accumulation of maize seedlings were the highest. In contrast, no significant effect of inoculation was found when the total P content was low or when inorganic P was sufficient in the soil. R. aquatilis JZ-GX1 promotes the growth of maize directly by secreting IAA and indirectly by secreting phytase. This work provides beneficial information for the development and application of R. aquatilis JZ-GX1 as a microbial fertilizer in the future.


1984 ◽  
Vol 47 (11) ◽  
pp. 841-847 ◽  
Author(s):  
P. GÉLINAS ◽  
J. GOULET ◽  
G. M. TASTAYRE ◽  
G. A. PICARD

The combined influence of temperature (4, 20, 37 and 50°C) and contact time (10, 20 and 30 min) on the efficacy of eight commercial disinfectants was evaluated by the Association of Official Analytical Chemists use-dilution method. An increase of temperature greatly enhanced the activity of all tested solutions, particularly glutaraldehyde, chlorhexidine acetate and the amphoteric surfactant, whereas contact time mainly enhanced the efficacy of sodium hypochlorite, the quaternary ammonium compound and the amphoteric surfactant. Temperature and contact time influenced the activity profile of the disinfectants tested, with a maximum efficacy near the optimum growth temperature (37°C) of the test organism (Pseudomonas aeruginosa ATCC 15442). This organism was highly resistant to the amphoteric surfactant as well as to the two quaternary ammonium compounds. Classification of disinfectants is proposed on the basis of their mode of action, temperature dependence and activation energies, heat and light stability, and tolerance to organic matter.


Parasitology ◽  
1985 ◽  
Vol 90 (1) ◽  
pp. 131-135 ◽  
Author(s):  
R. W. Walker ◽  
J. Barrett

The fluorescent probe 1-anilino-8-naphthalene suiphonic acid (ANS) was used to investigate the effect of temperature on the physical state of the mitochondrial membranes of adult and larval schistocephalus solzdus together with that of their hosts Gasterosteus aculeatus and Gallus domesticus. Arrhenius plots of ANS/membrane fluorescence for S. solidus plerocercoids was linear over the temperature range 15 to 58 °C, while that for the adult was biphasic with a discontinuity at 39·9 °C. This was interpreted as a physical change which occurred in the adult membrane but not in the plerocercoid membrane and pointed to an alteration in membrane composition during infection. Gasierosteus aculeatus showed a linear Arrhenius plot for membrane fluorescence, irrespective of acclimation temperature. Gallus domesticus showed a discontinuity in the Arrhenius plot for membrane fluorescence at 46·9 °C, outside the normal physiological temperature range.


2020 ◽  
Vol 12 (18) ◽  
pp. 7457
Author(s):  
Jie Xu ◽  
Yi Liu ◽  
Chao Zhu ◽  
Honglei Jia ◽  
Changyan Tian ◽  
...  

Halophytes have been studied as a model for morphological traits of adaptation to saline environments. However, little information has been given on plant growth, chlorophyll fluorescence responses, and change of ion content in halophytes grown in an aniline–salinity coexistent environment. This study hypothesized that aniline could induce alterations in plant growth, chlorophyll fluorescence, and ion content in Suaeda salsa, but salinity could promote the tolerance of halophytes to aniline. A 6 (aniline) × 3 (NaCl) factorial experiment (for a total of 18 treatments) was conducted to test the above hypothesis. After 30 d of cultivation, roots and shoots were harvested separately to analyze the effects of salinity on the seedling growth under aniline stress. Biomass accumulation was inhibited by aniline treatment, and the inhibition was significantly alleviated by 200 mM NaCl. The change in chlorophyll fluorescence in leaves with aniline stress was moderated by the addition of NaCl. The removal efficiency of aniline was significantly enhanced by moderate salinity. Aniline stress decreased the accumulation of Mg2+, but various concentrations of NaCl increased the accumulation of Mg2+, especially with 200 mM NaCl in both roots and shoots. Both aniline and salinity decreased the content of Ca2+. There was a negative correlation between the K+ and NaCl concentrations and between the Cl− and aniline concentrations. Our results indicated that Suaeda salsa may be suitable for the remediation of salinity and aniline-enriched wastewater.


1982 ◽  
Vol 28 (3) ◽  
pp. 284-290 ◽  
Author(s):  
N. Canillac ◽  
M. T. Pommier ◽  
A. M. Gounot

Lipid composition of three Arthrobacter strains (mesophilic, psychrotrophic, and psychrophilic strains) grown at their optimum growth temperature was studied. Great differences appeared only in the nature of their fatty acids: the psychrophilic strain synthesized less linear acids, C17 acids, and more iso isomers than the other two strains.Incubation of the three strains at temperatures below their optimum resulted in variations only in proportion of the different fatty acids: increase of the ratio of unsaturated, of branched, and of short-chain fatty acids.The relation between lipid composition and ability to grow at temperatures around 0 °C is discussed.


Sign in / Sign up

Export Citation Format

Share Document