scholarly journals Lime Requirement for New Jersey Blueberry-producing Soils

2002 ◽  
Vol 12 (2) ◽  
pp. 220-222 ◽  
Author(s):  
J.R. Heckman ◽  
G.C. Pavlis ◽  
W.L. Anastasia

In New Jersey, the major soil series (Sassafras, Pocomoke, Berryland, Atsion, and Downer) used for blueberry (Vaccinium corymbosum L.) production often have soil pH levels much lower than the soil pH range of 4.0 to 5.2 that is considered satisfactory for blueberry. The lime requirements for these soils to achieve a target soil pH of 4.8 has not been established. Soils with current soil pH levels in the range of 3.3 to 3.9 were collected from eight New Jersey sites used for blueberry production. The soils were treated with various application rates of calcium carbonate (CaCO3) and incubated in a green-house to estimate the lime requirement of each soil. After 70 days of incubation with CaCO3, results show that a general lime recommendation of 100 lb of calcium carbonate equivalent (CCE)/acre (112 kg·ha-1) for each one tenth of a soil pH unit increase desired would elevate pH of each of the soils to within a range (pH 4.3 to 5.0) that brackets the target pH of 4.8 without causing serious risk of overliming.

1990 ◽  
Vol 8 (1) ◽  
pp. 1-4
Author(s):  
G. Kidder ◽  
M.J. Holsinger ◽  
T.H. Yeager

Abstract Wettable sulfur (S) mixed with a Pineda fine sand (an Arenic Glossaqualf with 7.8 pH and 1.5% calcium carbonate equivalent) quickly acidified the soil, but the effect was lost within 8 weeks at low application rates and within 21 weeks at the highest rate (1 g S/kg soil or 1 lb S/1000 lb soil). Granular S mixed with the soil took one year to produce maximum pH reduction of 0.3, 0.4, and 0.9 pH units at 250, 500, and 1000 mg S/kg soil (1/4, 1/2, and 1 lb S/1000 lb soil), respectively . Wettable sulfur (S), surface-applied at 100 g/m2 (0.036 oz/10 ft2), lowered the pH of the upper 5 cm (2 in) of soil to the 5.6 to 5.8 range for one to two months before the pH returned to > 7.0; granular S took about five months to lower the pH to 6.7 but the soil pH was 6.2 two years after application. Wettable S at 20 g/kg soil (0.32 oz S/lb soil) in a small cylindrical zone resulted in a temporary depression of pH within the treated zone but had no effect on pH in other areas of the container. Mixing up to 1.0 g iron sulfate/kg soil (0.016 oz/lb soil) failed to reduce soil pH. Live-oak trunk diameter and plant height were not affected by any of the soil treatments in the two-year experiment.


1969 ◽  
Vol 46 (2) ◽  
pp. 107-119
Author(s):  
George Samuels

The pH values of the soils of Puerto Rico were determined with the following results: 1. About 80 percent of the soils were acid (below pH 7) and 50 percent were below pH 6, which was acid enough to require liming. 2. Most of the soils planted to bananas were pH 6 and above. 3. The pH range for brushland was wide, extending from acid to alkaline. 4. Eighty percent of the soils of the coconut plantations were above pH 6. 5. Coffee soils, in general, were acid, with 63 percent below pH 6, of which 49 percent were in the range pH 5.0 to 5.9 and 13 percent in the very acid range of pH 4.0 to 4.9. 6. The pH of soils planted to corn varied widely. 7. The small cotton acreage had a pH range of 5.0 to 5.9. 8. The soils planted to grapefruit had 57 percent of their acreage at pH 4.0 to 4.9 and 29 percent in the range pH 5.0 to 5.9. 9. The natural pastures had 75 percent of their soil at pH below 6, whereas improved and rotational pastures had only 39 percent below pH 6. 10. Pineapples were planted in acid soils, 75 percent of which were below pH 6. 11. The majority, 68 percent, of the plantains were grown in acid soils below pH 6. 12. Root-crop soils had a systematic distribution throughout the range of pH from below 4 to above 8. 13. Most soils used for soilage (cut grass) had a pH above 6. 14. Eighty-one percent of the sugarcane acreage was found to be in the range of pH 5 to 8. About 36 percent of the cane acreage was below pH 5.5 and in need of liming. 15. Tobacco was grown primarily on acid soils, with 61 percent of its acreage on those below pH 6. 16. No vegetables were found in soils with a pH below 5, and 50 percent were planted in soils with a pH above 6. 17. The pH range for woodland soil was distributed rather evenly from a pH 5 to 7.9. 18. The average pH and range of pH of the soils of Puerto Rico are presented, by soil series, and several examples are given of the relationship between soil pH and soil series.


HortScience ◽  
2002 ◽  
Vol 37 (4) ◽  
pp. 656-661 ◽  
Author(s):  
Nguyen V. Hue ◽  
Yvonne Mai

Manganese (Mn) toxicity in crops is a serious problem in Hawaii, especially Kauai and Oahu, where most soils are highly weathered. To devise a management strategy to control Mn toxicity, a greenhouse experiment was conducted on an acid (pH 4.4) Oxisol (Wahiawa series) having 15g·kg-1 total Mn. Factorial combinations of lime (0, 2.0, and 4.0 g·kg-1 CaCO3) and two composts (made from chicken manure and from sewage sludge at 0, 5, and 10 g·kg-1) were applied to the soil, which was subsequently planted to watermelon (Citrullus lanatus Thunb. `Crimson Sweet'). Our preliminary results showed that: 1) liming reduced Mn extractability and phytoavailability, but the reduction in Mn per unit increase in pH was much less than predicted by theory; 2) for good watermelon growth, soluble Mn, as extracted by the saturated paste method, should be <2.0 mg·L-1 corresponding to a soil pH >5.7; 3) unlike the saturated-paste extractable Mn, the Mehlich3-extractable Mn varied less with pH in a given soil series than between soil series; 4) effects of composts on Mn toxicity varied with compost properties, especially their Ca content and pH altering capacity; and 5) the diagnostic criteria for Mn toxicity in watermelon are tentatively proposed as: leaf Mn >1000 mg·kg-1 and leaf Ca/Mn ratio (g·g-1) <25.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 358
Author(s):  
Phui Yee Tan ◽  
Beng Ti Tey ◽  
Eng Seng Chan ◽  
Oi Ming Lai ◽  
Hon Weng Chang ◽  
...  

Calcium carbonate (CaCO3) has been utilized as a pH-responsive component in various products. In this present work, palm tocotrienols-rich fraction (TRF) was successfully entrapped in a self-assembled oil-in-water (O/W) emulsion system by using CaCO3 as the stabilizer. The emulsion droplet size, viscosity and tocotrienols entrapment efficiency (EE) were strongly affected by varying the processing (homogenization speed and time) and formulation (CaCO3 and TRF concentrations) parameters. Our findings indicated that the combination of 5000 rpm homogenization speed, 15 min homogenization time, 0.75% CaCO3 concentration and 2% TRF concentration resulted in a high EE of tocotrienols (92.59–99.16%) and small droplet size (18.83 ± 1.36 µm). The resulting emulsion system readily released the entrapped tocotrienols across the pH range tested (pH 1–9); with relatively the highest release observed at pH 3. The current study presents a potential pH-sensitive emulsion system for the entrapment and delivery of palm tocotrienols.


Agropedology ◽  
2019 ◽  
Vol 28 (2) ◽  
Author(s):  
G. Tiwari ◽  
◽  
A. Jangir ◽  
R. P. Sharma ◽  
B. Dash ◽  
...  

Detailed soil survey (1:10000 scale) was carried out using base map prepared from satellite data (IRS-P6 LISS IV and Cartosat-1) and Digital Elevation Models (DEM) in conjunction with Survey of India (SOI) Toposheets of 1:50000 scale in Valia block, Bharuch district of Gujarat. On the basis of landform, slope, land use/land cover and ground truth, six landscape ecological Units (LEUs) were delineated and six soil series were identified in the block. Five soil series occur on alluvial plain (cover 66.16 %) and one soil series occupies pediplain 27.61 %. These series were mapped into ten soil mapping units as phases of soil series. The representative pedons of alluvial plain were moderately deep to very deep and their sand, silt and clay content ranged from 8.2 to 44.4, 9.8 to 40.2 and 43.8 to 55.6 per cent, respectively. These pedons were neutral to strongly alkaline (pH 6.8 - 9.7), non-saline with low to high organic carbon (0.18 – 1.2 %) content, low to high calcium carbonate (5.9 - 26.6 %) and high CEC [>35 cmol (p+) kg-1]. Exchangeable complex of these pedons were dominated by Ca2+ followed by Mg2+, Na+ and K+ cations with high base saturation (72.0 to 99. 4 %). Soils were classified as Vertic Haplustepts, Typic Haplusterts, Typic Calciustepts, Typic Haplustepts and Sodic Haplusterts. The representative pedon of pediplains was shallow, dark brown (7.5YR3/2), clayey, strongly alkaline (pH>8.5), non-saline (<2 dSm-1) and had moderate organic carbon (0.50-0.75 %) and calcium carbonate (5-15 %) with high CEC [>35 cmol (p+) kg-1] and classified as Lithic Haplustepts. The soils were evaluated for their suitability for commonly grown crops (cotton, pigeon pea, wheat and chick pea) and mapping unit 2 and 4 were highly suitable for cotton cultivation and other were moderately to marginal suitable for other crops.


Soil Research ◽  
1985 ◽  
Vol 23 (2) ◽  
pp. 253 ◽  
Author(s):  
LK Abbott ◽  
AD Robson

Two species of vesicular-arbuscular (VA) mycorrhizal fungi differed in their ability to infect subterranean clover roots when soil pH was changed by liming. In a glasshouse experiment, Glomus fasciculatum infected extensively at each of four levels of soil pH (range 5.3-7.5). Glomus sp. (WUM 16) only infected extensively at the highest pH level. Liming the soil depressed plant growth, but this effect was almost entirely overcome by inoculation with G. fasciculatum. In the second experiment, Glomus sp. (WUM 16) failed to spread from existing infection within roots of subterranean clover when soil pH was 5.3 or lower. The lack of spread of infection was associated with an inability of hyphae of this fungus to grow in the soil used unless it was limed to give a pH at least greater than 5.3.


1997 ◽  
Vol 37 (2) ◽  
pp. 265 ◽  
Author(s):  
K. A. El-Tarabily ◽  
G. E. St J. Hardy ◽  
K. Sivasithamparam ◽  
A. G. McKay

Summary. Glasshouse trials were conducted to examine the effect of lime or gypsum amendments on the development of cavity spot disease of carrots in soil artificially infested with Pythium coloratum. Each amendment was applied to soil from the field at 4000 or 8000 kg/ha. Lime at both application rates significantly (P<0.05) reduced the incidence of the disease. In contrast, both gypsum treatments had no effect on the incidence of cavity spot disease. There was no significant (P>0.05) difference in calcium concentration between carrot roots grown in unamended, lime- or gypsum-amended soil with or without the pathogen. Calcium did not appear to play a direct role in the reduction of cavity spot disease. Under the controlled conditions of this glasshouse trial, reduction in the incidence of cavity spot appeared to be related to the increase in soil pH associated with the application of lime. Field trials at the site of soil collection will confirm whether this mechanism is related to field reduction of the disease following liming.


2019 ◽  
Vol 34 (3) ◽  
pp. 408-415
Author(s):  
Gatlin Bunton ◽  
Zachary Trower ◽  
Kevin W. Bradley

AbstractDuring the 2015, 2016, and 2017 growing seasons, a survey of 63 pastures in Missouri was conducted to determine the effects of selected soil and forage parameters on the density of common annual, biennial, and perennial weed species. Permanent sampling areas were established in each pasture at a frequency of one representative 20-m2 area per 4 ha of pasture, and weed species and density in each area were determined at 14-d intervals for a period from mid-April until late September. The parameters evaluated included soil pH, phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), sulfur (S), zinc (Zn), manganese (Mn), and copper (Cu) concentrations, as well as tall fescue density, forage groundcover density, and stocking rate. An increase of 1 unit in soil pH was associated with 146 fewer weeds per hectare, the largest reduction in weed density in response to any soil parameter. Increased soil pH was associated with the greatest reduction in perennial grass weed density, along with an average reduction of 1,410 brush weeds per hectare for each 1-unit increase in soil pH. Common ragweed, a widespread weed of pastures, could be reduced by 3,056 weeds ha−1 when soil pH was 1 unit greater. A 1-ppm increase in soil P was correlated with a decrease of 206 biennial broadleaf weeds per hectare. Perennial broadleaf weed density was reduced in soils with greater concentrations of P, K, and Ca. Additionally, for every 1% increase of tall fescue and forage groundcover, there was a decrease of 18 and 38 perennial broadleaf weeds per hectare. The results from this research indicate that the density of many common weed species can be reduced with higher soil pH and adjustments to soil macro- and micronutrient concentrations, especially P.


1987 ◽  
Vol 53 (S2) ◽  
pp. 32-32
Author(s):  
Helen C.M. Keeley

Present-day soils in the Borwick area form the Carnforth Association, i.e. freely drained gravelly brown earths, some calcareous brown earths and peaty gleys and peaty soils in hollows. pH is normally 6 to 7, with some soil pH higher than 7.The buried soil beneath the cairn was a truncated stagnopodzol with a pH of 7.35. The Eag, Bf and Bs horizons were present but the lack of a topsoil and relatively high pH suggested that pollen analysis of the soil would be unproductive. Similarly, detailed soil analysis was unlikely to add to the interpretation of the site and was therefore not pursued. The development of podsolised soils on such gravels is not unusual and may indicate that the vegetation at the time the cairn was constructed was acid grassland or moorland. The soil pH would have been on the acid side at this stage, rising subsequently due to downward leaching of the calcium carbonate from the overlying limestone of the enclosure.


Weed Science ◽  
1986 ◽  
Vol 34 (2) ◽  
pp. 328-332 ◽  
Author(s):  
David R. Fredrickson ◽  
Patrick J. Shea

The influence of soil pH on the uptake, degradation, and movement of chlorsulfuron {2-chloro-N-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino] carbonyl] benzenesulfonamide} in soil was examined. Phytotoxicity decreased as pH increased in a silty clay loam with an adjusted pH range of 5.9 to 7.5. Fresh weights of sorghum [Sorghum bicolor(L.) Moench. ‘Funks G-499 GBR’] shoots grown in soil at pH 7.5 and containing 0.8 or 1.6 ppbw chlorsulfuron were not different from the controls while large differences occurred at pH 5.9. Uptake of14C-chlorsulfuron by wheat (Triticum aestivumL. ‘Centurk’) in a silty clay loam with a pH of 5.9 was 67 to 100% greater than at pH 7.5. Soil pH strongly influenced the degradation rate of chlorsulfuron in a laboratory incubation study. Chlorsulfuron half-life in a silty clay loam was 1.9 weeks at pH 5.6 and 10 weeks at pH 7.5. Soil thin-layer chromatography indicated a high leaching potential for chlorsulfuron, and mobility increased as soil pH was increased.


Sign in / Sign up

Export Citation Format

Share Document