scholarly journals Rootstock Influences Seasonal Dry Matter and Carbohydrate Content and Partitioning in Above-ground Components of `Flordaprince' Peach Trees

1997 ◽  
Vol 122 (5) ◽  
pp. 673-679 ◽  
Author(s):  
T. Caruso ◽  
P. Inglese ◽  
M. Sidari ◽  
F. Sottile

Seasonal development of leaf area, leaf area index (LAI), dry matter, and carbohydrate content were measured from harvest 1992 to harvest 1993 in above-ground components of `Flordaprince' peach [Prunus persica (L.) Batsch] trees grafted on GF 677 (Prunus persica × Prunus amygdalus) and MrS 2/5 (Prunus cerasifera free pollinated) rootstocks, which widely differ in vigor. Whole trees were separated into fruit, leaves, shoots, 1-year-old wood and >1-year-old wood. Sampling dates were coincident with key fruit and tree developmental stages: dormancy, fruit set, pit hardening, and fruit harvest. Rootstock modified the vegetative vigor of the tree, the seasonal partitioning of dry matter, and starch content in above-ground components. Leaf area, LAI, and total above-ground dry matter were twice as high in the most vigorous combination (`Flordaprince'/GF 677), which gave the highest yield, but had the lowest harvest index. Rootstock vigor did not affect soluble sugar concentration in any of the canopy components. Starch content was greatest during dormancy and in the oldest wood of GF 677 trees. During fruit development, starch content rapidly decreased in 1-year-old wood and perennial components; at pit hardening it was four times greater in MrS 2/5 than in GF 677 trees. The vegetative-to-fruit dry mass ratio by pit hardening was 3:1 for MrS 2/5 and 9:1 for GF 677 trees. Competition with shoot growth apparently reduced fruit growth, particularly during Stage I and Stage II, as fruit size at harvest was significantly lower (17%) in GF 677 than in MrS 2/5 trees.

2017 ◽  
Vol 52 (5) ◽  
pp. 293-302 ◽  
Author(s):  
Thiago Schmitz Marques da Rocha ◽  
Nereu Augusto Streck ◽  
Alencar Junior Zanon ◽  
Elio Marcolin ◽  
Mirta Teresinha Petry ◽  
...  

Abstract: The objective of this work was to evaluate soybean cultivation in a hydromorphic or nonhydromorphic soil, with or without supplemental irrigation. Field experiments were carried out with the TECIRGA 6070RR and A 6411RG cultivars in highlands (nonhydromorphic soils) and lowlands (hydromorphic soils), which are traditionally cultivated with irrigated rice. The following parameters were determined in both soybean cultivars: leaf area index, developmental stages, dry matter partition, and leaf gas exchange. Low water stresses, which commonly occur either by deficit or excess in soybean areas cultivated in hydromorphic soils, do not affect the development and partitioning of dry matter; however, they cause reductions in stomatal conductance, photosynthetic rate, and leaf area evolution. Growing soybean in lowlands exposes plants to water stress, even in years with well-distributed rainfall during the growing season, due to the low water storage capacity of these soils.


1999 ◽  
Vol 124 (1) ◽  
pp. 39-45 ◽  
Author(s):  
T. Caruso ◽  
P. Inglese ◽  
F. Sottile ◽  
F.P. Marra

Vegetative growth, fruit yields, and dry matter partitioning within above-ground components were assessed during three growing seasons for trees of an early ripening peach (Prunus persica L. Batsch `Flordaprince' on GF 677 rootstock) trained either to a free standing central leader (930 trees/ha) or to Y shape (1850 trees/ha). Individual trees trained to central leader gave higher fruit yield, had a significantly greater leaf area and accumulated more dry mass in above-ground components per tree than Y shape trees. The training systems did not differ in terms of yield efficiency (yield per trunk cross-sectional area) and leaf area index (LAI), but Y shape trees had a higher harvest index and fruit dry mass per ground area than central leader. Four years after planting, Y shape had 35% higher yield per hectare than central leader. The relative contribution of 1-year-old wood, shoot and leaf to the dry mass of the tree decreased with tree age. Four years after planting the dry matter partitioned to the >1-year-old wood components represented 60% of the total tree mass (excluding fruit) in both the training systems. Central leader trees had the highest relative vegetative growth rate during stage III of fruit development. Most starch depletion occurred from dormancy to pit hardening from the canopy main storage pools (>1-year-old wood), and was higher for central leader than Y shape trees. For the ease of management and the high crop efficiency, the Y shape can be successfully used for peach high density planting systems.


2012 ◽  
Vol 10 (1) ◽  
pp. 16-22 ◽  
Author(s):  
M. Z. U. Kamal ◽  
M. N. Yousuf

The investigation was carried out to evaluate the effect of different organic manures on turmeric with reference to vegetative growth, biomass production, rhizome yield and its attributes of turmeric (Curcuma longa L.). Turmeric showed better response to the application of organic manures. Plant with neem cake application had the taller plant (79.30 cm), maximum number of tillers per plant (5.40), leaf number (5.40), leaf area (44.09) leaf area index (0.429), fresh weight of halum ( 190.05g), fresh weight of root (49.13 g), fresh weight of rhizome per plant (256.21 g) and dry weight of halum (15.21g), dry weight of root (7.32 g), dry weight of rhizome per plant (40.35 g), total dry matter yield (6.85 t ha-1) than those received other types of manures. Moreover, yield attributes such as number of mother rhizomes per plant-1 (1.75), more number of primary rhizomes per plant-1 (5.19), secondary rhizomes per plant-1 (18.03) and tertiary rhizomes per plant (7.69) were also highly accelerated by neem cake application. Similarly, the same treatment expressed the best in terms of size of mother rhizome (7.69 cm), primary rhizome (21.86 cm) and secondary rhizomes (7.05 cm).All these parameters in cumulative contributed to  produce the highest estimated fresh rhizomes yield & cured rhizomes yield (29.48 t ha-1, 5.59 t ha-1 respectively). The highest curing percentage (20.28) was observed in T3 treatment having mustard cake@ 2.0 t/ha. Thus, organic manure like neem cake was best fitted natural fertilizer for turmeric cultivation.DOI: http://dx.doi.org/10.3329/agric.v10i1.11060The Agriculturists 2012; 10(1): 16-22


Bragantia ◽  
2012 ◽  
Vol 71 (3) ◽  
pp. 394-399 ◽  
Author(s):  
Djeimi Isabel Janisch ◽  
Jerônimo Luiz Andriolo ◽  
Vinícius Toso ◽  
Kamila Gabriele Ferreira dos Santos ◽  
Jéssica Maronez de Souza

The objective of this research was to determine growth and dry matter partitioning among organs of strawberry stock plants under five Nitrogen concentrations in the nutrient solution and its effects on emission and growth of runner tips. The experiment was carried out under greenhouse conditions, from September 2010 to March 2011, in a soilless system with Oso Grande and Camino Real cultivars. Nitrogen concentrations of 5.12, 7.6, 10.12 (control), 12.62 and 15.12 mmol L-1 in the nutrient solution were studied in a 5x2 factorial randomised experimental design. All runner tips bearing at least one expanded leaf (patent requested) were collected weekly and counted during the growth period. The number of leaves, dry matter (DM) of leaves, crown and root, specific leaf area and leaf area index (LAI) was determined at the final harvest. Increasing N concentration in the nutrient solution from 5.12 to 15.12 mmol L-1 reduces growth of crown, roots and LAI of strawberry stock plants but did not affect emission and growth of runner tips. It was concluded that for the commercial production of plug plants the optimal nitrogen concentration in the nutrient solution should be 5.12 mmol L-1.


2017 ◽  
Vol 14 (2) ◽  
pp. 147-154 ◽  
Author(s):  
MM Kamrozzaman ◽  
MAH Khan ◽  
S Ahmed ◽  
N Sultana

An experiment was conducted at Sadipur charland under Farming System Research and Development Site, Hatgobindapur, Faridpur, during rabi season of 2012-13 and 2013-14 to study the growth and yield performance of cv. BARI Gom-24 as affected by different dates of sowing under Agro-ecological Zone-12 (AEZ-12) of Bangladesh. The experiment was laid out in randomized complete block design with six replications, comprising five different dates of sowing viz. November 5, November 15, November 25, December 5 and December 15. Results reveal that the tallest plant, leaf area index, total dry matter, and crop growth rate were observed in November 25 sown crop and leaf area index, total dry matter and crop growth rate were higher at booting, grain filling, and tillering stages of the crop. Maximum effective tillers hill-1 (3.49), spikes m-2, (311), number of grains spike-1 (42.20) and 1000-grain weight (52.10 g) were produced by November 25 sown crop exhibited the highest grain (4.30 t ha-1) and straw yield (4.94 t ha-1) as well as harvest index (46.88%) of the crop. Lowest performance was observed both in early (November 5) and late sown crop (December 15). The overall results indicated that November 25 sown crop showed better performance in respect of growth and yield of wheat under charland ecosystem of Bangladesh.J. Bangladesh Agril. Univ. 14(2): 147-154, December 2016


1982 ◽  
Vol 18 (1) ◽  
pp. 93-100 ◽  
Author(s):  
S. U. Remison ◽  
E. O. Lucas

SUMMARYTwo maize cvs, FARZ 23 and FARZ 25, were grown at three densities (37,000, 53,000 and 80,000 plants/ha) in 1979 and 1980. Leaf area index (LAI) increased with increase in plant population and was at a maximum at mid-silk. Grain yield was highest at 53,000 plants/ha. There was no relation between LAI and grain yield but there was a positive correlation between LAI and total dry matter yield.


1978 ◽  
Vol 90 (3) ◽  
pp. 569-577 ◽  
Author(s):  
G. O. Iremiren ◽  
G. M. Milbourn

SummaryTotal dry-matter yield of maize silage rose asymptotically as density was increased up to 17 plants/m2. Over the range 11–17 plants/m2, which is generally higher than is used in the U.K., the increase in yield was 1–1·6 t dry matter/ha which can justify the higher seed cost and although there was no adverse affect on time of maturity the risk of lodging increased at the highest density. During the harvest period whilst whole crop dry-matter percentage was rising from 23 to 28%, the ear dry-matter content rose steadily from 29 to 35%, whereas the leaf and stem dry-matter content remained essentially constant and only dried out at a later stage after a frost.Caldera 535 had a higher leaf area index and net assimilation rate than the earlier variety Julia which it outyielded by 15%. The additional yield was mainly stem tissue and the greater vegetative production caused an 11-day delay in reaching the silage stage of maturity (25% crop D.M.). NO differences occurred between density treatments and varieties in the forage quality components considered, namely percentage drymatter digestibility, modified acid-detergent fibre, crude protein and ash. Thus in U.K. conditions, total dry-matter yield exerts an overriding influence on the yields per unit area of these quality constituents. This contrasts with reports from the U.S.A. in which a reduced grain/stover ratio adversely influences silage quality.Removal of the whole ear (including husk and rachis) at an early stage in ear development resulted in a 50% reduction in the final dry-matter yield. In the earless plants, leaf area and net assimilation rate was lower, but the dry-matter content of the leaves and stem was considerably higher, and a marked purple coloration developed indicative of excess starch concentration. These results emphasize the need in maize silage not only for an adequate leaf canopy, best obtained early in the growing season by using high planting density and subsequently by using late maturing varieties, but also for sufficient sink capacity in the ear as well as in the stem fraction.


1984 ◽  
Vol 20 (2) ◽  
pp. 161-170
Author(s):  
D. Boobathi Babu ◽  
S. P. Singh

SUMMARYThe effects of irrigation and spraying of transpiration suppressants on growth and nutrient uptake by spring sorghum (CSH 6) have been investigated. Crop growth, measured by plant-height, leaf area index and dry matter production, and uptake of N, P and K increased with more frequent irrigation and in response to the spraying of transpiration suppressants. Foliar applications of atrazine at 200 g ha−1 and CCC at 300 ml ha−1 proved to be the best in this NW Indian location.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 232
Author(s):  
Nangial Khan ◽  
Fangfang Xing ◽  
Lu Feng ◽  
Zhanbiao Wang ◽  
Minghua Xin ◽  
...  

The number of cotton plants grown per unit area has recently gained attention due to technology expense, high input, and seed cost. Yield consistency across a series of plant populations is an attractive cost-saving option. Field experiments were conducted to compare biomass accumulation, fiber quality, leaf area index, yield and yield components of cotton planted at various densities (D1, 1.5; D2, 3.3; D3, 5.1; D4, 6.9; D5, 8.7; and D6, 10.5 plants m−2). High planting density (D5) produced 21% and 28% more lint yield as compared to low planting density (D1) during both years, respectively. The highest seed cotton yield (4662 kg/ha) and lint yield (1763 kg/ha) were produced by high plant density (D5) while the further increase in the plant population (D6) decreased the yield. The increase in yield of D5 was due to more biomass accumulation in reproductive organs as compared to other treatments. The highest average (19.2 VA gm m−2 d−1) and maximum (21.8 VM gm m−2 d−1) rates of biomass were accumulated in reproductive structures. High boll load per leaf area and leaf area index were observed in high planting density as compared to low, while high dry matter partitioning was recorded in the lowest planting density as compared to other treatments. Plants with low density had 5% greater fiber length as compared to the highest plant density, while the fiber strength and micronaire value were 10% and 15% greater than the lowest plant density. Conclusively, plant density of 8.7 plants m−2 is a promising option for enhanced yield, biomass, and uniform fiber quality of cotton.


Sign in / Sign up

Export Citation Format

Share Document