Ceramide-Enriched Membrane Domains Contribute to Targeted and Nontargeted Effects of Radiation Through Modulation of PI3K/AKT Signaling in HNSCC Cells

2020 ◽  
Author(s):  
Riad Ladjohounlou ◽  
Safa Louati ◽  
Alexandra Lauret ◽  
Arnaud Gauthier ◽  
Dominique Ardail ◽  
...  

2020 ◽  
Vol 21 (19) ◽  
pp. 7200
Author(s):  
Riad Ladjohounlou ◽  
Safa Louati ◽  
Alexandra Lauret ◽  
Arnaud Gauthier ◽  
Dominique Ardail ◽  
...  

We investigated the potential involvement of ceramide-enriched membrane domains in radiation-induced targeted and nontargeted effects using head and neck squamous cell carcinoma with opposite radiosensitivities. In radiosensitive SCC61 cells, the proportion of targeted effects was 34% and nontargeted effects killed 32% of cells. In contrast, only targeted effects (30%) are involved in the overall death of radioresistant SQ20B cells. We then demonstrated in SCC61 cells that nontargeted cell response was driven by the formation of the radiation-induced ceramide-enriched domain. By contrast, the existence of these platforms in SQ20B cells confers a permissive region for phosphatidylinositol-3-kinase (PI3K)/AKT activation. The disruption of lipid raft results in strong inhibition of PI3K/AKT signaling, leading to radiosensitization and apparition of nontargeted effects. These results suggest that ceramide-enriched platforms play a significant role in targeted and nontargeted effects during radiotherapy and that drugs modulating cholesterol levels may be a good alternative for improving radiotherapy effectiveness.



2021 ◽  
Vol 12 ◽  
Author(s):  
Guillaume Paré ◽  
Julien Vitry ◽  
Michael L. Merchant ◽  
Myriam Vaillancourt ◽  
Andréa Murru ◽  
...  

The myeloid inhibitory C-type lectin receptor CLEC12A limits neutrophil activation, pro-inflammatory pathways and disease in mouse models of inflammatory arthritis by a molecular mechanism that remains poorly understood. We addressed how CLEC12A-mediated inhibitory signaling counteracts activating signaling by cross-linking CLEC12A in human neutrophils. CLEC12A cross-linking induced its translocation to flotillin-rich membrane domains where its ITIM was phosphorylated in a Src-dependent manner. Phosphoproteomic analysis identified candidate signaling molecules regulated by CLEC12A that include MAPKs, phosphoinositol kinases and members of the JAK-STAT pathway. Stimulating neutrophils with uric acid crystals, the etiological agent of gout, drove the hyperphosphorylation of p38 and Akt. Ultimately, one of the pathways through which CLEC12A regulates uric acid crystal-stimulated release of IL-8 by neutrophils is through a p38/PI3K-Akt signaling pathway. In summary this work defines early molecular events that underpin CLEC12A signaling in human neutrophils to modulate cytokine synthesis. Targeting this pathway could be useful therapeutically to dampen inflammation.



2009 ◽  
Vol 296 (5) ◽  
pp. H1344-H1351 ◽  
Author(s):  
Jingfang Sun ◽  
Benjamin D. Hopkins ◽  
Kaoru Tsujikawa ◽  
Carole Perruzzi ◽  
Irit Adini ◽  
...  

Microvascular development is often perceived to result from a balance of positive and negative factors that impact signaling for proliferation and survival. The survival signaling that results from hypoxia-induced VEGF-A has been well established, but the factors that antagonize this signaling have been poorly studied. As endogenous inhibitors of angiogenesis, thrombospondins (TSPs) are likely candidates to affect survival signaling. Here we report that TSP1 antagonized microvascular survival to retinal hyperoxia, and Akt signaling in both the retina and in cultured endothelial cells. TSP1 expression is correlated with the association of the CD36 receptor with Src versus Fyn. In the presence of TSP1, CD36 is coprecipitated with Fyn as previously shown by others. However, in the absence of TSP1, there is a preferential association with Src. We now demonstrate that these Src family kinases play an important role in modulating microvascular survival in response to TSP1 by crossing tsp1−/− mice to the src−/− and fyn−/− mice and testing the survival of retinal blood vessels in hyperoxia. We find that tsp1−/−, fyn−/−, and double-mutant tsp1−/− /fyn−/− mice have a similar enhancement of capillary survival in oxygen, whereas in a tsp−/− background, the loss of only one allele of src restores the balance in survival and apoptosis to that of wild-type mice. Taken together, we hypothesize that TSP1 antagonizes VEGF-driven Akt survival signaling in part through the recruitment of Fyn to membrane domains containing CD36, but when TSP1 is absent, an opposing Src recruitment contributes to VEGF-driven Akt phosphorylation and capillary survival.



Author(s):  
J. Langmore ◽  
M. Isaacson ◽  
J. Wall ◽  
A. V. Crewe

High resolution dark field microscopy is becoming an important tool for the investigation of unstained and specifically stained biological molecules. Of primary consideration to the microscopist is the interpretation of image Intensities and the effects of radiation damage to the specimen. Ignoring inelastic scattering, the image intensity is directly related to the collected elastic scattering cross section, σɳ, which is the product of the total elastic cross section, σ and the eficiency of the microscope system at imaging these electrons, η. The number of potentially bond damaging events resulting from the beam exposure required to reduce the effect of quantum noise in the image to a given level is proportional to 1/η. We wish to compare η in three dark field systems.



Author(s):  
E.L. Benedetti ◽  
I. Dunia ◽  
Do Ngoc Lien ◽  
O. Vallon ◽  
D. Louvard ◽  
...  

In the eye lens emerging molecular and structural patterns apparently cohabit with the remnants of the past. The lens in a rather puzzling fashion sums up its own natural history and even transient steps of the differentiation are memorized. A prototype of this situation is well outlined by the study of the lenticular intercellular junctions. These membrane domains exhibit structural, biochemical and perhaps functional polymorphism reflecting throughout life the multiple steps of the differentiation of the epithelium into fibers and of the ageing process of the lenticular cells.The most striking biochemical difference between the membrane derived from the epithelium and from the fibers respectively, concerns the presence of the 26,000 molecular weight polypeptide (MP26) in the latter membranes.



Author(s):  
Kenneth H. Downing ◽  
Hu Meisheng ◽  
Hans-Rudolf Went ◽  
Michael A. O'Keefe

With current advances in electron microscope design, high resolution electron microscopy has become routine, and point resolutions of better than 2Å have been obtained in images of many inorganic crystals. Although this resolution is sufficient to resolve interatomic spacings, interpretation generally requires comparison of experimental images with calculations. Since the images are two-dimensional representations of projections of the full three-dimensional structure, information is invariably lost in the overlapping images of atoms at various heights. The technique of electron crystallography, in which information from several views of a crystal is combined, has been developed to obtain three-dimensional information on proteins. The resolution in images of proteins is severely limited by effects of radiation damage. In principle, atomic-resolution, 3D reconstructions should be obtainable from specimens that are resistant to damage. The most serious problem would appear to be in obtaining high-resolution images from areas that are thin enough that dynamical scattering effects can be ignored.



Author(s):  
J.M. Robinson ◽  
J.M Oliver

Specialized regions of plasma membranes displaying lateral heterogeneity are the focus of this Symposium. Specialized membrane domains are known for certain cell types such as differentiated epithelial cells where lateral heterogeneity in lipids and proteins exists between the apical and basolateral portions of the plasma membrane. Lateral heterogeneity and the presence of microdomains in membranes that are uniform in appearance have been more difficult to establish. Nonetheless a number of studies have provided evidence for membrane microdomains and indicated a functional importance for these structures.This symposium will focus on the use of various imaging modalities and related approaches to define membrane microdomains in a number of cell types. The importance of existing as well as emerging imaging technologies for use in the elucidation of membrane microdomains will be highlighted. The organization of membrane microdomains in terms of dimensions and spatial distribution is of considerable interest and will be addressed in this Symposium.



Author(s):  
Michael Edidin

Cell surface membranes are based on a fluid lipid bilayer and models of the membranes' organization have emphasised the possibilities for lateral motion of membrane lipids and proteins within the bilayer. Two recent trends in cell and membrane biology make us consider ways in which membrane organization works against its inherent fluidity, localizing both lipids and proteins into discrete domains. There is evidence for such domains, even in cells without obvious morphological polarity and organization [Table 1]. Cells that are morphologically polarised, for example epithelial cells, raise the issue of membrane domains in an accute form.The technique of fluorescence photobleaching and recovery, FPR, was developed to measure lateral diffusion of membrane components. It has also proven to be a powerful tool for the analysis of constraints to lateral mobility. FPR resolves several sorts of membrane domains, all on the micrometer scale, in several different cell types.



Author(s):  
Judy Ju-Hu Chiang ◽  
Robert Kuo-Cheng Chen

Germ cells from the rice stem borer Chilo suppresalis, were examined by light and electron microscopy. Damages to organelles within the germ cells were observed. The mitochondria, which provide the cell with metabolic energy, were seen to disintegrate within the germ cell. Lysosomes within the germ cell were also seen to disintegrate. The subsequent release of hydrolytic enzymesmay be responsible for the destruction of organelles within the germ cell. Insect spermatozoa were seen to lose the ability to move because of radiation treatment. Damage to the centrioles, one of which is in contact with the tail, may be involved in causing sperm immobility.



2015 ◽  
Vol 57 ◽  
pp. 177-187 ◽  
Author(s):  
Jennifer N. Byrum ◽  
William Rodgers

Since the inception of the fluid mosaic model, cell membranes have come to be recognized as heterogeneous structures composed of discrete protein and lipid domains of various dimensions and biological functions. The structural and biological properties of membrane domains are represented by CDM (cholesterol-dependent membrane) domains, frequently referred to as membrane ‘rafts’. Biological functions attributed to CDMs include signal transduction. In T-cells, CDMs function in the regulation of the Src family kinase Lck (p56lck) by sequestering Lck from its activator CD45. Despite evidence of discrete CDM domains with specific functions, the mechanism by which they form and are maintained within a fluid and dynamic lipid bilayer is not completely understood. In the present chapter, we discuss recent advances showing that the actomyosin cytoskeleton has an integral role in the formation of CDM domains. Using Lck as a model, we also discuss recent findings regarding cytoskeleton-dependent CDM domain functions in protein regulation.



Sign in / Sign up

Export Citation Format

Share Document