scholarly journals A rapid high-throughput sequencing-based approach for the identification of unknown bacterial pathogens in whole blood

2020 ◽  
Vol 6 (6) ◽  
pp. FSO476
Author(s):  
Ofir Israeli ◽  
Efi Makdasi ◽  
Inbar Cohen-Gihon ◽  
Anat Zvi ◽  
Shirley Lazar ◽  
...  

High-throughput DNA sequencing (HTS) of pathogens in whole blood samples is hampered by the high host/pathogen nucleic acids ratio. We describe a novel and rapid bacterial enrichment procedure whose implementation is exemplified in simulated bacteremic human blood samples. The procedure involves depletion of the host DNA, rapid HTS and bioinformatic analyses. Following this procedure, Y. pestis, F. tularensis and B. anthracis spiked-in samples displayed an improved host/pathogen DNA ratio of 2.5–5.9 orders of magnitude, in samples with bacteria spiked-in at 103–105 CFU/ml. The procedure described in this study enables rapid and detailed metagenomic profiling of pathogens within 8–9 h, circumventing the challenges imposed by the high background present in the bacteremic blood and by the unknown nature of the sample.

1973 ◽  
Vol 19 (5) ◽  
pp. 506-510 ◽  
Author(s):  
Larry L Small ◽  
Dwight B Coulter

Abstract An automated method was adapted to measure the concentration of Na and K in plasma, nonhemolyzed whole blood, and hemolyzed whole blood, and thus allow the calculation of erythrocyte electrolyte concentrations by a modified indirect method. The Na concentrations of nonhemolyzed whole blood and plasma were used to calculate the percent cell volume (hematocrit) of a blood sample. The percent cell volume and concentrations of Na and K in nonhemolyzed whole blood were used to modify the indirect method of calculating erythrocyte Na and K concentrations in canine, porcine, and human blood samples. Significant differences were found between the two indirect methods (indirect and modified indirect) used to calculate erythrocyte Na and K concentrations of human blood samples.


PLoS ONE ◽  
2011 ◽  
Vol 6 (7) ◽  
pp. e22213 ◽  
Author(s):  
Sarah Auburn ◽  
Susana Campino ◽  
Taane G. Clark ◽  
Abdoulaye A. Djimde ◽  
Issaka Zongo ◽  
...  

2018 ◽  
Author(s):  
K. Khanipov ◽  
G. Golovko ◽  
M. Rojas ◽  
M. Pimenova ◽  
L. Albayrak ◽  
...  

AbstractMicrobial activities have detrimental effects on industrial infrastructure. If not controlled, microbial presence can result in corrosion, biofilm formation, and product degradation. Serial dilution tests are routinely used for evaluating presence and abundance of microorganisms by diluting samples and culturing microbes in specific media designed to support microorganisms with particular properties, such as sulfate reduction.A high-throughput sequencing approach was used to evaluate changes in microbial composition during four standard serial dilution tests. Analysis of 159 isolates revealed significant differences in the microbial compositions of sequential serial dilution titers and identified several cases where: (a) bacteria known to have a detrimental metabolic function (such as acid production) were lost in the serial dilution medium designed to test for this function; (b) bacteria virtually absent in the original sample became dominant in the serial dilution medium. These observations raise concerns regarding the accuracy and overall usefulness of serial dilution tests.


2018 ◽  
Author(s):  
Curtis J Layton ◽  
Peter L McMahon ◽  
William J Greenleaf

SummaryHigh-throughput DNA sequencing techniques have enabled diverse approaches for linking DNA sequence to biochemical function. In contrast, assays of protein function have substantial limitations in terms of throughput, automation, and widespread availability. We have adapted an Illumina high-throughput sequencing chip to display an immense diversity of ribosomally-translated proteins and peptides, and then carried out fluorescence-based functional assays directly on this flow cell, demonstrating that a single, widely-available high-throughput platform can perform both sequencing-by-synthesis and protein assays. We quantified the binding of the M2 anti-FLAG antibody to a library of 1.3×104 variant FLAG peptides, exploring non-additive effects of combinations of mutations and discovering a “superFLAG” epitope variant. We also measured the enzymatic activity of 1.56×105 molecular variants of full-length of human O6-alkylguanine-DNA alkyltransferase (SNAP-tag). This comprehensive corpus of catalytic rates linked to amino acid sequence perturbations revealed amino acid interaction networks and cooperativity, linked positive cooperativity to structural proximity, and revealed ubiquitous positively-cooperative interactions with histidine residues.


2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Vasco Liberal ◽  
Angela Stassinopoulos ◽  
Scott Whitney ◽  
Steven Wilkinson ◽  
Winnie Huang ◽  
...  

2017 ◽  
Author(s):  
Darrell O. Ricke ◽  
Anna Shcherbina ◽  
Adam Michaleas ◽  
Philip Fremont-Smith

AbstractHigh throughput DNA sequencing technologies enable improved characterization of forensic DNA samples enabling greater insights into DNA contributor(s). Current DNA forensics techniques rely upon allele sizing of short tandem repeats by capillary electrophoresis. High throughput sequencing enables forensic sample characterizations for large numbers of single nucleotide polymorphism loci. The slowest computational component of the DNA forensics analysis pipeline is the characterization of raw sequence data. This paper optimizes the SNP calling module of the DNA analysis pipeline with runtime results that scale linearly with the number of HTS sequences (patent pending)[1]. GrigoraSNPs can analyze 100 million reads in less than 5 minutes using 3 threads on a 4.0 GHz Intel i7-6700K laptop CPU.


2021 ◽  
Vol 118 (18) ◽  
pp. e2025289118
Author(s):  
Zoe Swank ◽  
Grégoire Michielin ◽  
Hon Ming Yip ◽  
Patrick Cohen ◽  
Diego O. Andrey ◽  
...  

Novel technologies are needed to facilitate large-scale detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) specific antibodies in human blood samples. Such technologies are essential to support seroprevalence studies and vaccine clinical trials, and to monitor quality and duration of immunity. We developed a microfluidic nanoimmunoassay (NIA) for the detection of anti–SARS-CoV-2 IgG antibodies in 1,024 samples per device. The method achieved a specificity of 100% and a sensitivity of 98% based on the analysis of 289 human serum samples. To eliminate the need for venipuncture, we developed low-cost, ultralow-volume whole blood sampling methods based on two commercial devices and repurposed a blood glucose test strip. The glucose test strip permits the collection, shipment, and analysis of 0.6 μL of whole blood easily obtainable from a simple finger prick. The NIA platform achieves high throughput, high sensitivity, and specificity based on the analysis of 289 human serum samples, and negligible reagent consumption. We furthermore demonstrate the possibility to combine NIA with decentralized and simple approaches to blood sample collection. We expect this technology to be applicable to current and future SARS-CoV-2 related serological studies and to protein biomarker analysis in general.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 481-481
Author(s):  
Paul F Bray ◽  
Paolo M. Fortina ◽  
Srikanth Nagalla ◽  
Kathleen Delgrosso ◽  
Adam Ertel ◽  
...  

Abstract Abstract 481 Most successful DNA-based genome wide association studies identify genomic regions, not genes themselves, and the findings are often devoid of context or mechanism. To identify the genetic basis of disease and disease traits, it is imperative to characterize the quantity and forms of the genes that are expressed in the tissue of interest. It is not feasible to use primary megakaryocytes to profile mRNA from large numbers of subjects, but platelet RNA is easy to obtain. Others and we have previously surveyed genome-wide platelet RNA expression using microarrays, an approach that has had a major impact on systems biology. However, microarrays have a number of limitations, including the use of probes only to known transcripts, a limited dynamic range for quantifying very low and high levels of transcripts, high background levels from cross-hybridization, and complicated normalization schemes to compare expression levels across experiments. Novel high-throughput sequencing approaches that overcome the limitations of microarrays have recently become available. RNA sequencing (RNAseq) has a remarkable ability to quantify mRNAs and provide information about transcript sequence variations, including single nucleotide changes and alternately spliced exons. The goal of these studies was to apply RNAseq to capture platelet transcriptome complexity. Total RNA was prepared using leukocyte-depleted platelets (LDP; less than 1 WBC per 5 million platelets) from 4 donors; 2 were studied twice each. Analysis of this material showed that compared to nucleated cells (HeLa, Meg-01), platelets had 50%-90% less ribosomal RNA, and high levels of messenger and small RNAs (Agilent 2100). The major reduction in platelet rRNA was confirmed by RNA gel analysis. The platelet whole transcriptomes were analyzed via the Applied Biosystems (AB) SOLiD 3Plus next generation sequencing protocols and platform. A typical sequence run generated ∼250 million reads of 50 bp each. We observed more than 30,000 independent platelet mRNA-coding transcripts from about 10,000 genes, demonstrating substantial numbers of variant isoforms. The increased sensitivity of RNAseq for low copy number is clear from these results, because prior platelet transcriptome studies using microarrays have identified only 1500–6000 expressed genes. As an example, the platelet-specific transcript, ITGA2B, showed very high copy number in platelets, but no expression in HeLa cells and modest expression in the megakaryocyte cell line, Meg-01. As is expected for RNA-Seq data, the density of mapped reads varies by exon and local sequence. We also provide examples of newly discovered SNPs that encode non-conservative amino acid changes (AKT2 1209A/T; PIK3CB 837C/G) and alter consensus exon/intron splice junction sites (P2YR12 nt 65 G/A). We have also identified a major difference in the ratio of two splice variants of the FcRg chain, 4:1 in one human platelet donor and 49:1 in another. In summary, we have demonstrated that RNAseq can accurately and sensitively determine the quantity and quality of variations in individual platelet transcriptomes. It appears that the the platelet transcriptome is approximately 10 times more complex than previously thought. The major relative reduction in platelet rRNA may be an advantage for characterizing functional platelet transcripts. RNAseq should permit better understanding of the molecular mechanisms regulating platelet physiology and identify novel genetic variants that contribute to disorders of thrombosis and hemostasis. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document