scholarly journals Antimicrobial and anti-inflammatory activities of commercial aromatizing fragrances

2021 ◽  
pp. FSO704
Author(s):  
Hagar Bach ◽  
Horacio Bach

Aim: To explore the bioactivities of commercial fragrances. Materials & methods: The antimicrobial activity of 25 commercial fragrances was assessed with pathogenic bacteria and fungi in vapor phase. Inflammatory response was evaluated by the measurement of cytokines. Results: Several fragrances were able to kill the microorganisms. Moreover, preparations of binary mixtures of the most active fragrances showed a synergistic effect. Regarding the inflammatory response, none of the tested fragrances showed a pro-inflammatory response, but two fragrances upregulated the secretion of IL-10 from macrophages. Conclusion: The antimicrobial activities of fragrances represent a new approach to control airborne pathogens.

Author(s):  
I. E. Daniel ◽  
K. N. Mathew ◽  
P. L. John

Methanol and ethyl acetate leaf extracts of Taraxacum officinale (dandelion) were evaluated for phytochemical compounds, vitamins, antioxidant and antimicrobial activities. Phytochemical compounds and vitamins were determined using standard procedures while antioxidant activity was determined using 2, 2’-diphenyl-1-picrylhydrazyl (DPPH) and Ferric reducing/antioxidant power (FRAP) Assay.  Antimicrobial activity against various pathogenic bacteria and fungi were screened using disc diffusion method. The results indicated that the bioactive compounds (total phenol, flavonoids, saponins, tannins and alkaloids) determined quantitatively were present in appreciable concentration in both extracts. The result also showed that both extracts contain a variety of vitamins (A, B complex, C and E), with vitamins C and A having the highest concentration while the B-vitamins (B1, B2 and B3) and vitamin E were present in moderate concentrations. Both extracts showed significant scavenging and reducing ability comparable to the reference antioxidant, ascorbic acid in a dose dependent manner, with methanol exhibiting the highest scavenging and reducing capacity. The antimicrobial activity of both extracts showed appreciable broad spectrum activity against the pathogenic bacteria and fungi strains tested at various concentrations. Methanol extract was found to be most effective compared to ethyl acetate extract. These results indicated that the leaf extracts of dandelion possess antioxidant and antibacterial activity against the tested bacteria possibly due to the presence of bioactive compounds and other nutrients.


2009 ◽  
Vol 1 (2) ◽  
Author(s):  
Risa Nofiani ◽  
Siti Nurbetty ◽  
Ajuk Sapar

<p>The increase of issues on the antibiotics resistant pathogenic bacteria has triggered high exploration for new antimicrobial compounds. One of the potential sources is sponge-associated bacteria. The aim of this study was to get sponge-associated bacteria extract containing antimicrobial activities. On the basis screening of antimicrobial activity using by streaking on agar medium, there were two potential isolates with antimicrobial activities namely LCS1 and LCS2. The two isolates were cultivated,then secondary metabolite product were extracted using methanol as a solvent. Minimum inhibitory concentrations (MICs) of extract LCS 1 were 1,000 μg/well for S. aureus, 950 μg/well for Salmonella sp.and 800 μg/well for Bacillus subtilis. Minimum inhibitory concentrations of extract LCS 2 were 500 μg/well for S. aureus, 1,050 μg/well for Salmonella sp., 750 μg/well for Bacillus subtilis, 350 μg/well for P. aeruginosa, 750 μg/sumur terhadap B. subtilis. Based on the MIC values, the two assay extracts have a relatively low antimicrobial activity.</p> <p>Keywords:Antimicrobial,Sponges associated bacteria,MICs</p>


2021 ◽  
Vol 62 (1) ◽  
Author(s):  
Junpeng Li ◽  
Shuping Hu ◽  
Wei Jian ◽  
Chengjian Xie ◽  
Xingyong Yang

AbstractAntimicrobial peptides (AMPs) are a class of short, usually positively charged polypeptides that exist in humans, animals, and plants. Considering the increasing number of drug-resistant pathogens, the antimicrobial activity of AMPs has attracted much attention. AMPs with broad-spectrum antimicrobial activity against many gram-positive bacteria, gram-negative bacteria, and fungi are an important defensive barrier against pathogens for many organisms. With continuing research, many other physiological functions of plant AMPs have been found in addition to their antimicrobial roles, such as regulating plant growth and development and treating many diseases with high efficacy. The potential applicability of plant AMPs in agricultural production, as food additives and disease treatments, has garnered much interest. This review focuses on the types of plant AMPs, their mechanisms of action, the parameters affecting the antimicrobial activities of AMPs, and their potential applications in agricultural production, the food industry, breeding industry, and medical field.


2021 ◽  
Vol 9 (1) ◽  
pp. 171
Author(s):  
Yitayal S. Anteneh ◽  
Qi Yang ◽  
Melissa H. Brown ◽  
Christopher M. M. Franco

The misuse and overuse of antibiotics have led to the emergence of multidrug-resistant microorganisms, which decreases the chance of treating those infected with existing antibiotics. This resistance calls for the search of new antimicrobials from prolific producers of novel natural products including marine sponges. Many of the novel active compounds reported from sponges have originated from their microbial symbionts. Therefore, this study aims to screen for bioactive metabolites from bacteria isolated from sponges. Twelve sponge samples were collected from South Australian marine environments and grown on seven isolation media under four incubation conditions; a total of 1234 bacterial isolates were obtained. Of these, 169 bacteria were tested in media optimized for production of antimicrobial metabolites and screened against eleven human pathogens. Seventy bacteria were found to be active against at least one test bacterial or fungal pathogen, while 37% of the tested bacteria showed activity against Staphylococcus aureus including methicillin-resistant strains and antifungal activity was produced by 21% the isolates. A potential novel active compound was purified possessing inhibitory activity against S. aureus. Using 16S rRNA, the strain was identified as Streptomyces sp. Our study highlights that the marine sponges of South Australia are a rich source of abundant and diverse bacteria producing metabolites with antimicrobial activities against human pathogenic bacteria and fungi.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3170
Author(s):  
Wafaa M. Elkady ◽  
Mariam H. Gonaid ◽  
Miriam F. Yousif ◽  
Mahmoud El-Sayed ◽  
Hind A. N. Omar

Active components from natural sources are the current focus in most pharmacological research to provide new therapeutic agents for clinical use. Essential oils from the Pinus species have been traditionally used in medicine. This study aimed to investigate the chemical profile of two Pinus species, Pinus halepensis L. and Pinus pinea Mill, from different altitudes in Libya and study the effect of environmental conditions on the biological activities of essential oils. A clevenger apparatus was used to prepare the essential oils by hydrodistillation. Analyses were done using GC/MS. Anthelmintic and antimicrobial activities were tested against the earthworm Allolobophora caliginosa, gram-positive bacteria, gram-negative bacteria, and fungi. Different chemical profiles were observed among all tested essential oils, and terpenes were the most dominant class. All studied essential oils from the Pinus species exhibited a remarkable anthelmintic activity compared to the standard piperazine citrate drug. Pinus halepensis from both altitudes showed broad-spectrum antimicrobial activity against all tested microorganisms, while Pinus pinea was effective against only Escherichia coli. From these findings, one can conclude that there are variations between studied species. The essential oil compositions are affected by environmental factors, which consequently affect the anthelmintic and antimicrobial activity.


2008 ◽  
Vol 25 (No. 2) ◽  
pp. 81-89 ◽  
Author(s):  
A. Adiguzel ◽  
H. Ozer ◽  
H. Kilic ◽  
B. Cetin

The present work reports the <i>in vitro</i> antimicrobial activities of the essential oil and methanol extract from <i>Satureja hortensis</i> as well as the content of its essential oil. The chemical composition of hydrodistilled essential oil of Satureja hortensis was analysed by means of GC-MS. Thirty constituents were identified. The main constituents of the oil were thymol (40.54%), &gamma;-terpinene (18.56%), carvacrol (13.98%), and <i>p</i>-cymene (8.97). The essential oil of <i>Satureja hortensis</i> exhibited the activity against 25 bacteria, 8 fungi, and a yeast, <i>C. albicans</i>; exerting the Minimum Inhibitory Concentration values (MIC) ranging from 15.62 to 250 &micro;l/ml. Similarly, methanol extract of the plant also showed antimicrobial activity.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Awol Mekonnen ◽  
Berhanu Yitayew ◽  
Alemnesh Tesema ◽  
Solomon Taddese

In this study, thein vitroantimicrobial activities of four plant essential oils (T. schimperi,E. globulus,R. officinalis, andM. Chamomilla) were evaluated against bacteria and fungi. The studies were carried out using agar diffusion method for screening the most effective essential oils and agar dilution to determine minimum inhibitory concentration of the essential oils. Results of this study revealed that essential oils ofT. schimperi,E. globulus, andR. officinaliswere active against bacteria and some fungi. The antimicrobial effect ofM. chamomillawas found to be weaker and did not show any antimicrobial activity. The minimum inhibitory concentration values ofT. schimperiwere<15.75 mg/mL for most of the bacteria and fungi used in this study. The minimum inhibitory concentration values of the other essential oils were in the range of 15.75–36.33 mg/mL against tested bacteria. This study highlighted the antimicrobial activity of the essential oil ofE. globulus,M. chamomilla,T. Schimperi, andR. officinalis. The results indicated thatT. schimperihave shown strong antimicrobial activity which could be potential candidates for preparation of antimicrobial drug preparation.


Toxins ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 432 ◽  
Author(s):  
Sam Woong Kim ◽  
Yeon Jo Ha ◽  
Kyu Ho Bang ◽  
Seungki Lee ◽  
Joo-Hong Yeo ◽  
...  

Bacteriocins are functionally diverse toxins produced by most microbes and are potent antimicrobial peptides (AMPs) for bacterial ghosts as next generation vaccines. Here, we first report that the AMPs secreted from Lactobacillus taiwanensis effectively form ghosts of pathogenic bacteria and are identified as diverse bacteriocins, including novel ones. In detail, a cell-free supernatant from L. taiwanensis exhibited antimicrobial activities against pathogenic bacteria and was observed to effectively cause cellular lysis through pore formation in the bacterial membrane using scanning electron microscopy (SEM). The treatment of the cell-free supernatant with proteinase K or EDTA proved that the antimicrobial activity is mediated by AMPs, and the purification of AMPs using Sep-Pak columns indicated that the cell-free supernatant includes various amphipathic peptides responsible for the antimicrobial activity. Furthermore, the whole-genome sequencing of L. taiwanensis revealed that the strain has diverse bacteriocins, confirmed experimentally to function as AMPs, and among them are three novel bacteriocins, designated as Tan 1, Tan 2, and Tan 3. We also confirmed, using SEM, that Tan 2 effectively produces bacterial ghosts. Therefore, our data suggest that the bacteriocins from L. taiwanensis are potentially useful as a critical component for the preparation of bacterial ghosts.


Sign in / Sign up

Export Citation Format

Share Document