scholarly journals CREEP RUPTURE LIFE OF PRE-STRAINED SUPERALLOY N07080

2021 ◽  
Vol 9 (10) ◽  
pp. 1167-1176
Author(s):  
Omer Beganovic ◽  

The creep of the pre-strained superalloy N07080 is described in this work. The pre-strain was achieved by warm rolling at 1050 oC.-The warm rolling was performed due to additional strengthening, i.e increasing of the superalloy hardness.-The pre-strain drastically reduces the creep rupture life of the superalloy compared to the creep rupture life of the standard heat treated superalloy.-The drastic reductionof the creep rupture life is result of rapid creep cavity nucleation on stress concentration sites along primary grain boundaries of the pre-strained superalloy.-Recrystallization eliminates potential sites for rapid cavity nucleation and prolongates the creep rupture life.

Author(s):  
Joseph A. Daleo ◽  
Keith A. Ellison ◽  
David A. Woodford

Stress relaxation and constant displacement rate tensile tests were performed on poly-crystalline GTD111 alloy material removed from General Electric MS6001B first stage combustion turbine buckets. Samples were examined in the standard heat treated condition, thermally exposed at 900°C for 5000 hours and from service run buckets. Creep rates of the material were measured and evaluated directly in terms of temperature capability at 850°C and 900°C. Stress relaxation tests done at 0.8% total strain indicated that the creep rate properties in the service exposed airfoil were an order of magnitude higher than the material properties in the standard heat treated condition measured in the root form. In terms of temperature capability, the creep rate properties of the service run airfoil material had decreased by the equivalent of almost 40°C. The stress relaxation test method was demonstrated to be a very useful tool in quantifying the degradation of creep properties in service run components. Creep data that would require years to gather using conventional creep tests was generated in a few days. This now makes realistic life assessment and repair / replace decisions possible during turbine overhauls. The test method’s unique ability to measure changes in creep rate over a large stress range, enabled the technique to distinguish between changes in creep strength due to (normal) microstructural evolution from the combined effects of microstructural evolution and strain related creep damage. A method for estimating standard constant load creep rupture life from the stress relaxation creep rate data is also presented along with time-temperature parameter correlations. The data sets examined in this study indicate that creep rupture lives can be estimated within a factor of three from the stress relaxation data. The information and analysis techniques described in this paper are directly applicable to metallurgical life assessment evaluations and the re-qualification of repaired General Electric buckets in Frame 3, 5, 6, 7 and 9 engine models.


Author(s):  
Tao Chen ◽  
Xuedong Chen ◽  
Juan Ye ◽  
Xiyun Hao

Centrifugal cast 25Cr35Ni-Nb alloy furnace tubes with different contents of S are selected to investigate effects of S addition on creep and fracture behavior. Rupture tests in air at 1100 °C and 17 MPa and slow rate tensile tests at 850 °C showed that the presence of S decreased the creep rupture life and elevated temperature ductility of 25Cr35Ni-Nb alloy obviously. Scanning electron micrographs (SEM) of the fracture and energy dispersive X-ray spectroscopy (EDS) analysis results indicated that S was the important element to control creep rupture life and elevated temperature ductility. S segregated to grain boundaries at elevated temperatures, blocky fine sulfide particles with smooth surface distribute on the grain boundaries. The presence of sulfides became effective nucleation sites for intergranular creep cavities. Micro cracks occurred by linking up cavities at elevated temperatures due to local stress concentration. Eventually, early failure happened.


1999 ◽  
Vol 121 (1) ◽  
pp. 129-137 ◽  
Author(s):  
J. A. Daleo ◽  
K. A. Ellison ◽  
D. A. Woodford

Stress relaxation and constant displacement rate tensile tests were performed on polycrystalline GTD111 alloy material removed from General Electric MS6001B first stage combustion turbine buckets. Samples were examined in the standard heat treated condition, thermally exposed at 900°C for 5000 hours and from service run buckets. Creep rates of the material were measured and evaluated directly in terms of temperature capability at 850°C and 900°C. Stress relaxation tests done at 0.8 percent total strain indicated that the creep rate properties in the service exposed airfoil were an order of magnitude higher than the material properties in the standard heat treated condition measured in the root form. In terms of temperature capability, the creep rate properties of the service run airfoil material had decreased by the equivalent of almost 40°C. The Stress relaxation test method was demonstrated to be a very useful tool in quantifying the degradation of creep properties in service run components. Creep data that would require years to gather using conventional creep tests was generated in a few days. This now makes realistic life assessment and repair/replace decisions possible during turbine overhauls. The test method’s unique ability to measure changes in creep rate over a large stress range, enabled the technique to distinguish between changes in creep strength due to (normal) microstructural evolution from the combined effects of microstructural evolution and strain related creep damage. A method for estimating standard constant load creep rupture life from the stress relaxation creep rate data is also presented along with time-temperature parameter correlations. The data sets examined in this study indicate that creep rupture lives can be estimated within a factor of three from the stress relaxation data. The information and analysis techniques described in this paper are directly applicable to metallurgical life assessment evaluations and the requalification of repaired General Electric buckets in Frame 3, 5, 6, 7, and 9 engine models.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Tao Chen ◽  
Xuedong Chen ◽  
Juan Ye

Centrifugal cast 25Cr35Ni–Nb alloy furnace tubes with different contents of S are selected to investigate effects of S addition on creep and fracture behavior. Rupture tests in air at 1100 °C and 17 MPa and slow rate tensile tests at 850 °C showed that the presence of S decreased the creep rupture life and elevated temperature ductility of 25Cr35Ni–Nb alloy obviously. Scanning electron micrographs (SEM) of the fracture and energy dispersive X-ray spectroscopy (EDS) analysis results indicated that S was the important element to control creep rupture life and elevated temperature ductility. S segregated to grain boundaries at elevated temperatures, and blocky fine sulfide particles with smooth surface distribute on the grain boundaries. The presence of sulfides became effective nucleation sites for intergranular creep cavities. Micro cracks occurred by linking up cavities at elevated temperatures due to local stress concentration. Eventually, early failure happened.


2012 ◽  
Vol 31 (6) ◽  
pp. 755-758
Author(s):  
S. G. Tian ◽  
G. L. Xie ◽  
J. Xie ◽  
X. M. Zhou

AbstractBy means of long-term aging treatment, creep properties measurement and microstructure observation, the influences of long-term aging on the microstructure and creep behaviors of FGH95 Superalloy are investigated. Results show that the fine γ′ particles dispersedly precipitate in the alloy after fully heat treated, and coarser γ′ phase discontinuously distribute along the grain boundaries. After the alloy is long-term aged at 723 K for 500 h, the fine γ′ phase with better cube degree and carbide particles distribute dispersedly in the alloy to enhance the creep resistance of the alloy for possessing a longer creep lifetime at the condition of 923 K and 1034 MPa. The deformed feature of the alloy is that configurations of slipping dislocations and the stacking fault appear in the alloy. As the creep goes on, the cracks initiate and propagate along the boundaries due to dislocations tangling in the grain boundaries for bringing out the stress concentration.


Author(s):  
D. E. Fornwalt ◽  
A. R. Geary ◽  
B. H. Kear

A systematic study has been made of the effects of various heat treatments on the microstructures of several experimental high volume fraction γ’ precipitation hardened nickel-base alloys, after doping with ∼2 w/o Hf so as to improve the stress rupture life and ductility. The most significant microstructural chan§e brought about by prolonged aging at temperatures in the range 1600°-1900°F was the decoration of grain boundaries with precipitate particles.Precipitation along the grain boundaries was first detected by optical microscopy, but it was necessary to use the scanning electron microscope to reveal the details of the precipitate morphology. Figure 1(a) shows the grain boundary precipitates in relief, after partial dissolution of the surrounding γ + γ’ matrix.


Author(s):  
A.H. Advani ◽  
L.E. Murr ◽  
D.J. Matlock ◽  
W.W. Fisher ◽  
P.M. Tarin ◽  
...  

Coherent annealing-twin boundaries are constant structure and energy interfaces with an average interfacial free energy of ∼19mJ/m2 versus ∼210 and ∼835mJ/m2 for incoherent twins and “regular” grain boundaries respectively in 304 stainless steels (SS). Due to their low energy, coherent twins form carbides about a factor of 100 slower than grain boundaries, and limited work has also shown differences in Cr-depletion (sensitization) between twin versus grain boundaries. Plastic deformation, may, however, alter the kinetics and thermodynamics of twin-sensitization which is not well understood. The objective of this work was to understand the mechanisms of carbide precipitation and Cr-depletion on coherent twin boundaries in deformed SS. The research is directed toward using this invariant structure and energy interface to understand and model the role of interfacial characteristics on deformation-induced sensitization in SS. Carbides and Cr-depletion were examined on a 20%-strain, 0.051%C-304SS, heat treated to 625°C-4.5h, as described elsewhere.


Author(s):  
P. J. Goodhew

Cavity nucleation and growth at grain and phase boundaries is of concern because it can lead to failure during creep and can lead to embrittlement as a result of radiation damage. Two major types of cavity are usually distinguished: The term bubble is applied to a cavity which contains gas at a pressure which is at least sufficient to support the surface tension (2g/r for a spherical bubble of radius r and surface energy g). The term void is generally applied to any cavity which contains less gas than this, but is not necessarily empty of gas. A void would therefore tend to shrink in the absence of any imposed driving force for growth, whereas a bubble would be stable or would tend to grow. It is widely considered that cavity nucleation always requires the presence of one or more gas atoms. However since it is extremely difficult to prepare experimental materials with a gas impurity concentration lower than their eventual cavity concentration there is little to be gained by debating this point.


Author(s):  
S.J. Splinter ◽  
J. Bruley ◽  
P.E. Batson ◽  
D.A. Smith ◽  
R. Rosenberg

It has long been known that the addition of Cu to Al interconnects improves the resistance to electromigration failure. It is generally accepted that this improvement is the result of Cu segregation to Al grain boundaries. The exact mechanism by which segregated Cu increases service lifetime is not understood, although it has been suggested that the formation of thin layers of θ-CuA12 (or some metastable substoichiometric precursor, θ’ or θ”) at the boundaries may be necessary. This paper reports measurements of the local electronic structure of Cu atoms segregated to Al grain boundaries using spatially resolved EELS in a UHV STEM. It is shown that segregated Cu exists in a chemical environment similar to that of Cu atoms in bulk θ-phase precipitates.Films of 100 nm thickness and nominal composition Al-2.5wt%Cu were deposited by sputtering from alloy targets onto NaCl substrates. The samples were solution heat treated at 748K for 30 min and aged at 523K for 4 h to promote equilibrium grain boundary segregation. EELS measurements were made using a Gatan 666 PEELS spectrometer interfaced to a VG HB501 STEM operating at 100 keV. The probe size was estimated to be 1 nm FWHM. Grain boundaries with the narrowest projected width were chosen for analysis. EDX measurements of Cu segregation were made using a VG HB603 STEM.


Author(s):  
Wenyan Gan ◽  
Hangshan Gao ◽  
Haiqing Pei ◽  
Zhixun Wen

Abstract According to the microstructural evolution during longterm thermal exposure at 1100 °C, the creep rupture life of Ni-based single crystal superalloys at 980 °C/270 MPa was evaluated. The microstructure was characterized by means of scanning electron microscopy, X-ray diffraction and related image processing methods. The size of γ’ precipitates and the precipitation amount of topologically close-packed increased with the increase in thermal exposure time, and coarsening of the γ’ precipitates led to the simultaneous increase of the matrix channel width. The relationship between the creep rupture life and the lattice misfit of γ/γ’, the coarsening of γ’ precipitate and the precipitation of TCP phase are systematically discussed. In addition, according to the correlation between γ’ phase evolution and creep characteristics during thermal exposure, a physical model is established to predict the remaining creep life.


Sign in / Sign up

Export Citation Format

Share Document