scholarly journals Effects of dipyridamole and its use in neurology

2021 ◽  
pp. 41-48
Author(s):  
N. V. Pizova

Dipyridamole has been on the pharmaceutical market since 1959 and, as a pyrimidyl-pyrimidine compound, has a variety of mechanisms of action. The very first action of dipyridamole was its antianginal effect. In subsequent years, attention was drawn to the antiplatelet properties of dipyridamole, which are related to inhibition of platelet phosphodiesterase as well as to blocking adenosine transport. Another important property of dipyridamole is its effect on the deformability of red blood cells, thereby improving microcirculation. Dipyridamole affects changes in the dynamics of platelet activity and vascular reactivity and causes improvement of cerebral perfusion. Due to its pronounced antiplatelet properties, the drug has been widely studied for the prevention of ischemic strokes and transient ischemic attacks, both as monotherapy and in combination with other drugs. Unlike other platelet antiaggregants, dipyridamole does not have a damaging effect on mucous membranes. Its antiplatelet effect is not accompanied with inhibition of cyclooxygenase activity and reduction of prostacyclin synthesis. In the treatment of cerebral circulation disorders, dipyridamole can be used to control the antithrombotic effect by selecting the optimal dose of the drug. Dipyridamole has antioxidant properties, enhances NO-mediated pathways, has indirect anti-inflammatory effects via adenosine and prostaglandin-2 as well as direct anti-inflammatory effects and several other effects. Dipyridamole is considered a safe drug based on decades of clinical experience. Its side effects are usually limited and transient. Given the diverse effects of dipyridamole, it can be used for a wide range of pathologies other than thrombosis prevention. Data on the efficacy and safety of dipyridamole in various diseases of the neurological spectrum are presented.

2021 ◽  
Vol 12 ◽  
Author(s):  
Jia Hui Wong ◽  
Anna M. Barron ◽  
Jafri Malin Abdullah

Natural products remain a crucial source of drug discovery for accessible and affordable solutions for healthy aging. Centella asiatica (L.) Urb. (CA) is an important medicinal plant with a wide range of ethnomedicinal uses. Past in vivo and in vitro studies have shown that the plant extract and its key components, such as asiatic acid, asiaticoside, madecassic acid and madecassoside, exhibit a range of anti-inflammatory, neuroprotective, and cognitive benefits mechanistically linked to mitoprotective and antioxidant properties of the plant. Mitochondrial dysfunction and oxidative stress are key drivers of aging and neurodegenerative disease, including Alzheimer’s disease and Parkinson’s disease. Here we appraise the growing body of evidence that the mitoprotective and antioxidative effects of CA may potentially be harnessed for the treatment of brain aging and neurodegenerative disease.


Author(s):  
Fatima Khan ◽  
Mohd Nayab ◽  
Abdul Nasir Ansari

Ginger has been appreciated for over 2500-3000 years in many parts of the world due to its numerous scientific properties. The ginger plant (Zingiber officinale Roscoe) belongs to the Zingiberaceae family. It is a known food and flavoring ingredient reputed for its wide range of medicinal properties that have been widely used in Chinese, Ayurvedic, and Unāni Tibb worldwide, since antiquity. Ginger has long been used to cure a variety of ailments, including diarrhea, stomach discomfort, indigestion, and nausea. It is a versatile herb with phenomenal phytotherapeutic and medicinal properties. Active ingredients available in ginger such as 6-gingerol, 6-shogaol, 6-paradol, and zingerone are responsible for upgrading enzyme actions and balancing circulation through rejuvenating the body with physical re-strengthening. Gingerols, the key phenolic plant secondary metabolites responsible for its distinct flavor and health benefits, are found in the rhizome of ginger Extensive study has been undertaken over the last two decades to uncover bioactive ingredients and the therapeutic potential of ginger. This review considers ginger's chemical composition and the most recent study findings on its possible health advantages, such as analgesic, anti-inflammatory, antibacterial, and antioxidant properties due to its phytochemistry. Overall, clinical trials are needed to confirm these prospective various health advantages of ginger in human subjects and the most efficacious dosage, based on the current body of scientific literature.


Biomedicines ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 306 ◽  
Author(s):  
Francesca Oppedisano ◽  
Roberta Macrì ◽  
Micaela Gliozzi ◽  
Vincenzo Musolino ◽  
Cristina Carresi ◽  
...  

Polyunsaturated fatty acids (n-3 PUFAs) are long-chain polyunsaturated fatty acids with 18, 20 or 22 carbon atoms, which have been found able to counteract cardiovascular diseases. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in particular, have been found to produce both vaso- and cardio-protective response via modulation of membrane phospholipids thereby improving cardiac mitochondrial functions and energy production. However, antioxidant properties of n-3 PUFAs, along with their anti-inflammatory effect in both blood vessels and cardiac cells, seem to exert beneficial effects in cardiovascular impairment. In fact, dietary supplementation with n-3 PUFAs has been demonstrated to reduce oxidative stress-related mitochondrial dysfunction and endothelial cell apoptosis, an effect occurring via an increased activity of endogenous antioxidant enzymes. On the other hand, n-3 PUFAs have been shown to counteract the release of pro-inflammatory cytokines in both vascular tissues and in the myocardium, thereby restoring vascular reactivity and myocardial performance. Here we summarize the molecular mechanisms underlying the anti-oxidant and anti-inflammatory effect of n-3 PUFAs in vascular and cardiac tissues and their implication in the prevention and treatment of cardiovascular disease.


Author(s):  
O. I. Panasenko ◽  
V. I. Mozul ◽  
O. M. Denysenko ◽  
I. I. Aksonova ◽  
T. V. Oberemko

The aim of the work was chromato-mass-spectroscopic research of chemical composition of Elaeagnus angustifolia L. fruits and leaves and identifying further prospects for the use of this plant in medicine. Materials and methods. Raw materials of Elaeagnus angustifolia L. were selected as objects of study. The tincture was obtained by maceration and the raw material was extracted with methyl alcohol at room temperature for 10 days according to the method of making tinctures. The study of the chemical composition of Elaeagnus angustifolia L. was carried out using gas chromatograph Agilent 7890B GC System (Agilent, Santa Clara, CA, USA) with mass spectrometric detector Agilent 5977 BGC/MSD (Agilent, Santa Clara, CA, USA) and chromatographic column DB-5ms (30 m × 250 mkm × 0,25 mkm). Results. 23 compounds (1 in the isomeric state) in fruits and 20 compounds (2 in the isomeric state) in the leaf of Elaeagnus angustifolia L. were identified. The main components of fruits were sitosterol (phytosterols) – 12.53 %, propyl acetate (esters of carboxylic acids) – 12.60 %, chamazulene (terpenes) – 11.97 % and palmitic acid (fatty acids) – 8.28 %. The main component of leaves were sitosterol (phytosterols) – 17.57 %, 1-(2-hydroxy-5-methylphenyl)-ethanone (ketone) – 8.35 %, phytol (terpenes) – 6.10 %. It is known from the literature that chamazulene has antioxidant, antinociceptive, cytotoxic activity. Sitosterol has anti-inflammatory and antidiabetic activity. Hexadecanoic (palmitic) acid has antimicrobial, antidiabetic and antioxidant properties. Phytol is characterized by a wide range of biological action – antimicrobial, antinociceptive, anti-inflammatory, antioxidant and cytotoxic. Conclusions. Based on the above, the olive can be considered as a source of antimicrobial, antinociceptive, anti-inflammatory, antioxidant, antidiabetic and cytotoxic drugs.


2017 ◽  
Vol 15 (1) ◽  
pp. 82-91
Author(s):  
Daniela Batista ◽  
Pedro L. Falé ◽  
Maria L. Serralheiro ◽  
Maria-Eduarda Araújo ◽  
Catarina Dias ◽  
...  

AbstractPlants belonging to the genus Salvia (Lamiaceae) are known to have a wide range of biological properties. In this work, extracts obtained from the aerial parts of Salvia sclareoides Brot. were evaluated to investigate their chemical composition, toxicity, bioactivity, and stability under in vitro gastrointestinal conditions. The composition of the supercritical fluid extract was determined by GC and GC-MS, while the identification of the infusion constituents was performed by HPLC-DAD and LC-MS. The in vitro cytotoxicity of both extracts (0-2 mg/mL) was evaluated in Caco-2 cell lines by the MTT assay. The anti-inflammatory and anticholinesterase activities were determined through the inhibition of cyclooxygenase-1 and acetylcholinesterase enzymes, while β-carotene/linoleic acid bleaching test and the DPPH assays were used to evaluate the antioxidant activity. The infusion inhibited cyclooxygenase-1 (IC50 = 271.0 μg/mL), and acetylcholinesterase (IC50 = 487.7 μg/ mL) enzymes, also demonstrated significant antioxidant properties, as evaluated by the DPPH (IC50 = 10.4 μg/mL) and β-carotene/linoleic acid (IC50 = 30.0 μg/mL) assays. No remarkable alterations in the composition or in the bioactivities of the infusion were observed after in vitro digestion, which supports the potential of S. sclareoides as a source of bioactive ingredients with neuroprotective, anti-inflammatory and antioxidant properties.


Proceedings ◽  
2020 ◽  
Vol 40 (1) ◽  
pp. 43
Author(s):  
Kübra Uzun ◽  
Ayşe Kübra Karaboğa Arslan

The genus Achillea L. belongs to Asteraceae (Compositae), the largest family of vascular plants. There are 50 species, which of 24 is endemic in this genus in Turkey. Achillae species are used as a tonic, anti-inflammatory, anti-spasmodic, diaphoretic, diuretic and emmenagogic agents and have been used for treatment of hemorrhage, pneumonia, rheumatic pain and wounds healing traditionally. The imbalanced antioxidant systems leads to various pathophysiological conditions such as inflammation, neurodegenerative diseases and cancer. Achillea species have several components; essential oils, sesquiterpenes and phenolic compounds such as flavonoids and phenolic acids. Phenolic compounds and flavonoids are the most important medicinal metabolites of Achillea species. Flavonoids have been reported to exert a wide range of biological activities including anti-inflammatory, antioxidant and anti-tumor effects. This study aimed to assess the in vitro antioxidant properties of the methanol extracts from the aerial parts of A. cucullata (ACME) and A. sieheana (ASME) against hydrogen peroxide (H2O2)-induced oxidative stress in human SH-SY5Y neuronal cells. Our study showed that the ACME and ASME provided neuroprotection against H2O2-induced oxidative stress. In conclusion, ACME and ASME might help in reducing oxidative stress for preventive therapy associated with neurodegenerative diseases and cancer.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Camille Dugardin ◽  
Benoît Cudennec ◽  
Juliette Caron ◽  
Laetitia Guérin-Deremaux ◽  
Catherine Lefranc-Millot ◽  
...  

AbstractIntroductionThe gastrointestinal digestion of food proteins can generate peptides having a wide range of biological activities and possibly involved in many physiological processes. In this study, we screened various potential bioactivities generated by plant-based protein samples as compared to one animal-based protein after in vitro simulation of gastrointestinal digestion (SGID).Materials and methods1 protein samples: Whey protein (WhP) as an animal protein reference (tested twice, in each set), 3 grades of pea protein (PeaP1, PeaP2 and PeaP3) and an hydrolyzed pea protein (HPeaP), pea and wheat albumins (PeaA and WA), wheat protein (WP), potato, fava bean and oat proteins (PP, FBP and OP) were submitted to SGID.Undigested and digested protein samples were then tested in different in vitro, cellular or acellular models, including measures on : 1/energy homeostasis through their ability to promote satiety hormones (CCK and GLP-1) secretion by STC-1 cells, to inhibit DPP-IV activity and to interact with opioid receptors; 2/anti-hypertensive properties through their ability to inhibit ACE activity; 3/anti-inflammatory properties through their ability to decrease IL-8 secretion by Caco-2 cells submitted or not to LPS; 4/antioxidant properties through their ability to inhibit production of the 3 reactive oxygen species (ROS): O2.-, H2O2 and HO..ResultsThe SGID of the 11 protein samples led to bioactive peptides able to stimulate CCK and GLP-1 secretion by enteroendocrine cells in a dose-dependent manner, to inhibit in vitro DPP-IV and ACE activity and to bind opioid receptors. They were also able to decrease production of ROS. Anyway, no anti-inflammatory impact through inhibition of IL-8 secretion has been highlighted in this study but no pro-inflammatory impact was detected neither; even more, some protein samples lost their pro-inflammatory potential after digestion. The best candidates answering globally to the main activities explored were PeaP1, PeaP2, HPeaP, PP and FBP with some specificities.DiscussionThese protein samples could thus be potentially valorized in the future in the context of type 2 diabetes and related cardiovascular risk prevention, or for their antioxidant properties in the context of cardiovascular diseases or ageing. Moreover, those peptides could offer natural preventive alternatives to some drugs. This will need further exploration and in vivo validation.


2020 ◽  
Vol 26 (24) ◽  
pp. 2876-2884 ◽  
Author(s):  
Joanna Wieczfinska ◽  
Przemyslaw Sitarek ◽  
Tomasz Kowalczyk ◽  
Ewa Skała ◽  
Rafal Pawliczak

: Inflammation plays a major role in chronic airway diseases like asthma, COPD, and cystic fibrosis. Inflammation plays a crucial role in the worsening of the lung function resulting in worsening symptoms. The inflammatory process is very complexed, therefore the strategies for developing an effective treatment for inflammatory airway diseases would benefit from the use of natural substances. : Parthenolide, apocynin, proanthocyanidins, and boswellic acid present different mechanisms of actions - among others, through NF-κB or NADPH oxidase inhibition, therefore showing a wide range of applications in various inflammatory diseases. Moreover, some of them have also antioxidant properties. : Naturally occurring substances may exert some anti-inflammatory effects by modulating some of the inflammatory pathways. These agents have been used in different cultures for thousands of years and have proven to be relatively safe. : Parthenolide, apocynin, proanthocyanidins, and boswellic acid present different mechanisms of actions - among others, through NF-þB or NADPH oxidase inhibition, therefore showing a wide range of applications in various inflammatory diseases. Moreover, some of them have also antioxidant properties. : This review provides an overview of the anti-inflammatory effects of some of the natural agents and illustrates their great potential as sources of drugs to cover an extensive range of pharmacological effects.


2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
I. Adamska ◽  
P. Biernacka

Safflower flowers (Carthamus tinctorius) contain many natural substances with a wide range of economic uses. The most famous dye isolated from flower petals is hydroxysafflor A (HSYA), which has antibacterial, anti-inflammatory, and antioxidant properties. This review is aimed at updating the state of knowledge about their applicability in oncology, pulmonology, cardiology, gynecology, dermatology, gastrology, immunology, and suitability in the treatment of obesity and diabetes and its consequences with information published mainly in 2018-2020. They were also effective in treating obesity and diabetes and its consequences. The issues related to the possibilities of using HSYA in the production of health-promoting food were also analyzed.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3746
Author(s):  
Camille Dugardin ◽  
Benoit Cudennec ◽  
Mélissa Tourret ◽  
Juliette Caron ◽  
Laetitia Guérin-Deremaux ◽  
...  

The gastrointestinal digestion of food proteins can generate peptides with a wide range of biological activities. In this study, we screened various potential bioactivities generated by plant-based proteins. Whey protein as an animal protein reference, five grades of pea protein, two grades of wheat protein, and potato, fava bean, and oat proteins were submitted to in vitro SGID. They were then tested in vitro for several bioactivities including measures on: (1) energy homeostasis through their ability to modulate intestinal hormone secretion, to inhibit DPP-IV activity, and to interact with opioid receptors; (2) anti-hypertensive properties through their ability to inhibit ACE activity; (3) anti-inflammatory properties in Caco-2 cells; (4) antioxidant properties through their ability to inhibit production of reactive oxygen species (ROS). Protein intestinal digestions were able to stimulate intestinal hormone secretion by enteroendocrine cells, to inhibit DPP-IV and ACE activities, to bind opioid receptors, and surprisingly, to decrease production of ROS. Neither pro- nor anti-inflammatory effects have been highlighted and some proteins lost their pro-inflammatory potential after digestion. The best candidates were pea, potato, and fava bean proteins.


Sign in / Sign up

Export Citation Format

Share Document